Рассматривается система нелинейных дискретных (конечно-разностных) уравнений общего вида с ограниченным запаздыванием. Интерес к задачам устойчивости таких систем в последние годы значительно возрос; в частности, это связано с актуальными проблемами управления через сеть. В основном анализируется задача устойчивости по всем переменным нулевого положения равновесия, поскольку заменой переменных к такой задаче сводится задача устойчивости по всем переменным любого решения рассматриваемой системы. Одним из основных методов исследования является дискретно-функциональный вариант прямого метода Ляпунова, получивший существенное развитие в теоретическом и прикладном аспектах. В данной статье предполагается, что рассматриваемая система уравнений допускает «частичное» (нулевое) положение равновесия, и ставится задача устойчивости по отношению к части определяющих это положение равновесия переменных. Такая задача относится к более общим задачам частичной устойчивости, которые исследуются для нелинейных динамических систем различной формы математического описания. Предложенная постановка задачи частичной устойчивости дополняет круг указанных исследований применительно к классу рассматриваемых систем. Для решения поставленной задачи применяется метод функционалов Ляпунова - Красовского в пространстве дискретных функций при соответствующей конкретизации требований к функционалам. Ослабления таких требований можно добиться введением дополнительных дискретных функций, посредством которых: 1) проводится корректировка области функционального пространства, где строятся функционалы Ляпунова - Красовского; 2) находятся оценки функционалов и их разностей (приращений) в силу рассматриваемой системы. В результате используемые функционалы и их разности (приращения) могут быть знакопеременными в области функционального пространства, обычно рассматриваемой при анализе частичной устойчивости. На основе предложенного подхода получены достаточные условия частичной устойчивости (асимптотической устойчивости) указанного вида. Особенности подхода показаны на примере двух классов нелинейных систем заданной структуры, для которых частичная устойчивости анализируется в пространстве параметров. При этом обращается внимание на целесообразность использования семейства функционалов.
A system of nonlinear discrete (finite-difference) of a general form with a bounded delay is considered. Interest in the tasks of qualitative analysis of such systems has increased significantly in recent years. At the same time, the problem of stability with respect to all variables of the zero equilibrium position, which has a great generality, is mainly analyzed in domestic and foreign literature. The main research method is a discrete-functional analogue of the direct Lyapunov method. In this article, it is assumed that the system under consideration admits a “partial” (in some part of the state variables) zero equilibrium position. The problem of stability of a given equilibrium position is posed, and stability is considered not in all, but only in relation to a part of the variables that determine this equilibrium position. Such a problem belongs to the class of problems of partial stability, which are actively studied for systems of various forms of mathematical description. The proposed statement of the problem complements the scope of the indicated studies in relation to the system under consideration. To solve this problem, a discrete version of the Lyapunov- Krasovskii functionals method is used in the space of discrete functions with appropriate specification of the functional requirements. To expand the capabilities of this method, it is proposed to use two types of additional auxiliary (vector, generally speaking) discrete functions in order to: 1) adjustments of the phase space region of the system in which the Lyapunov-Krasovskii functional is constructed; 2) finding the necessary estimates of the functionals and their differences (increment) due to the system under consideration, on the basis of which conclusions about partial stability are made. The expediency of this approach lies in the fact that as a result, the Lyapunov-Krasovskii functional, as well as its difference due to the system under consideration, can be alternating in the domain that is usually considered when analyzing partial stability. Sufficient conditions of partial stability, partial uniform stability, and partial uniform asymptotic stability of the specified type are obtained. The features of the proposed approach are shown on the example of two classes of nonlinear systems of a given structure, for which partial stability is analyzed in parameter space. Attention is drawn to the expediency of using a one-parameter family of functionals.