Реализуется алгоритм численного решения граничных задач для обыкновенных дифференциальных уравнений, основанный на методе коллокации и представлении решения в виде разложения по полиномам Чебышева. Предлагается вместо традиционного подхода - слияния всех условий (дифференциальных и граничных) в одну систему линейных алгебраических уравнений (СЛАУ) - перейти к методике решения задачи в несколько отдельных этапов. Вначале выделяются спектральные коэффициенты, определяющие «общее» решение исходной задачи. Трудоемкость приведения матрицы СЛАУ к диагональной форме (в случае систем ОДУ с постоянными коэффициентами) на этом этапе эквивалентна сложности умножения чебышевской матрицы коэффициентов на вектор правой части системы. На втором этапе учет граничных условий выделяет «частное» искомое решение, однозначно доопределяя недостающие коэффициенты искомого разложения. Предложенный метод может использоваться для моделирования задач классической механики. Вклад авторов: все авторы сделали эквивалентный вклад в подготовку публикации. Авторы заявляют об отсутствии конфликта интересов.
An algorithm for the numerical solution of boundary value problems for ordinary differential equations based on the collocation method and representation of the solution as an expansion in Chebyshev polynomials is implemented. It is proposed instead of the traditional approach - merging all conditions (differential and boundary) into one system of linear algebraic equations (SLAE) - to switch to a method for solving the problem in several separate stages. First, spectral coefficients are identified that determine the "general" solution of the original problem. The complexity of reducing the SLAE matrix to a diagonal form (in the case of ODE systems with constant coefficients) at this stage is equivalent to the complexity of multiplying the Chebyshev matrix of coefficients by the vector of the right side of the system. At the second stage, account of the boundary conditions selects a "particular" desired solution, uniquely defining the missing coefficients of the desired expansion. The proposed method can be used to model problems in classical mechanics. Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.