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The constructive form of the Kuryshkin–Wodkiewicz model of quantum measure-
ments was earlier developed in detail for the quantum Kepler problem. For more
complex quantum objects, such a construction is unknown. At the same time, the
standard (non-constructive) model of Holevo–Helstrom quantum measurements is
suitable for any quantum object. In this work, the constructive model of quantum
measurements is generalized to a wider class of quantum objects, i.e., the optical
spectrum of atoms and ions with one valence electron. The analysis is based on ex-
perimental data on the energy ordering of electrons in an atom according to the
Klechkovsky–Madelung rule and on the substantiation of a single-particle potential
model for describing the energy spectrum of optical electrons in alkali metal atoms.
A representation of the perturbation of a single-particle potential in the form of
a convolution of the potential of an electron in a hydrogen atom with the Wigner
function of a certain effective state of the core in an alkali metal atom representa-
tion allows reducing all calculation algorithms for alkali metals to the corresponding
algorithms for the hydrogen atom.

Key words and phrases: models of quantum measurements, energy spectrum of
alkali metal atoms, method of single-particle potential, perturbation of discrete
spectrum of an observable

1. Introduction

The energy spectrum 𝐸𝑛 = −𝑅/(2𝑛2) of a valence electron in a hydrogen
atom is described by the discrete spectrum of Hamiltonian 𝐻̂ = −Δ/2 − 1/𝑟
of the quantum Kepler problem with Hamilton function 𝐻(𝑞, 𝑝) = ⃗𝑝2/(2𝑚) −
𝑒2/| ⃗𝑟|. In addition to operator 𝐻̂, the measured spectrum of the valence
electron also depends on the state ̂𝜌 of the quantum probe of a measur-
ing instrument, i.e., is described by the discrete spectrum of the measured

observable 𝑂𝜌(𝐻) = 𝑂𝑊 (𝐻 ∗ 𝑊𝜌) [1].
The constructive form of the Kuryshkin–Wodkiewicz quantum measure-

ment model is thoroughly developed for the quantum Kepler problem [2]
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and quantum oscillator [3], [4]. For more complex quantum objects, such
a construction is unknown. At the same time, the standard (nonconstructive)
Holevo–Helstrom quantum measurement model is applicable to any quantum
object, any quantum system [5], [6].
The goal of this paper is to generalize the constructive quantum measure-

ment Kuryshkin–Wodkiewicz model to a wider class of quantum objects and
to develop a quantum measurement model for optical spectrum of atoms
and ions with one valence electron. We will consider the alkali metal atoms
that consist of a core (atomic nucleus and electrons of all filled shells) and
a valence (outer) electron, as well as ions with one valence electron.

2. Hydrogen atom

Quantum mechanics understands the description of the hydrogen atom as
the description of the electron in this atom. Its energy spectrum has a very
simple form

𝐸𝑛 = − 𝑅
2𝑛2 , (1)

when the atom is theoretically considered as an isolated quantum object.
In the process of measurement, the quantum object is no more isolated, it
becomes an open system incorporated in a more complex ‘object + probe’
quantum system [7]–[10].
The measured energy spectrum of an electron in a hydrogen atom is

perturbed with respect to the spectrum (1): ̃𝐸𝑛 = 𝐸𝑛 + 𝛿𝐸𝑛.
Thus, a problem of description (constructing a mathematical model) of

the measured values of the hydrogen atom optical spectrum. This model
incorporates the Weyl–Kuryshkin quantization rule and the rigging of the
above mentioned model: {𝜑𝑘} is the mixed state of the quantum probe, the
smoothed (perturbed) classical observable is 𝐴 ∗ 𝑊{𝜑𝑘}(𝑞, 𝑝), and the Weyl
rule applied to it is 𝑂{𝜑𝑘}(𝐴) = 𝑂𝑊(𝐴). Theoretical study of the spectrum
of this operator and the numerical calculation of the discrete spectrum parts
affiliated with {𝜑𝑘} are published in Ref. [11]. For the hydrogen atom the

model is verified with the relative accuracy of ∼ 10−16.
Before discussing the dependence of the perturbation 𝛿𝐸𝑛 in the hydrogen

atom induced by the action of the measuring instrument with a quantum
probe in the state {𝜑𝑘}, we recall what is known about the discrete energy
spectrum 𝐸𝑍

𝑛𝑙 of the valence electron in an isolated alkali metal atom with
the atomic number 𝑍.

3. Energy spectrum of a valence electron in alkali
metal atoms

Quantum mechanical description of the valence electron in a hydrogen
atom is provided by the Schrödinger equation

𝐻̂0𝜓( ⃗𝑟) = 𝜀𝜓( ⃗𝑟) (2)
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with the operator 𝐻̂0 = 𝑂𝑊(𝐻), where 𝑂𝑊 is the Weyl quantization rule,

transforming the Hamiltonian Kepler function 𝐻 = ⃗𝑝2/2 − 1/| ⃗𝑟| into Hamil-
tonian operator 𝐻̂0 = −∇⃗2/2 − 1/| ⃗𝑟|. Equation (2) for the eigenvalues (the
energy spectrum of the electron in the hydrogen atom) and eigenfunctions
(the discrete spectrum wave functions of the hydrogen atom) has exact solu-
tions [12]:

𝜀𝑛 = − 1
2𝑛2 , 𝜓𝑛𝑙𝑚( ⃗𝑟) = 𝑅𝑛𝑙(𝑟)𝑌𝑙𝑚(𝜃, 𝜑),

where ⃗𝑟 = (𝑟, 𝜃, 𝜑) are spherical coordinates and 𝑛, 𝑙, 𝑚 are the principal,
orbital, and azimuthal quantum number, respectively.
While in the hydrogen atom and hydrogen-like ions, the spectral lines are

ordered according to the law

− 1
2𝑛2 , (3)

i.e., the energy spectrum is degenerate with respect to the orbital and
azimuthal quantum numbers, in the energy spectrum of valence (optical) elec-
trons in the alkali metal atoms the orbital degeneracy is removed (see Eq. (4)).
The degeneracy with respect to azimuthal quantum number remains in any
potential having a spherical symmetry.
In the book by V.N. Kondratyev [13] in Table 9 on page 181 the following

data are presented for the optical spectra of alkali metals (in Hartree atomic
units):

𝜀𝑛𝑙 = − 1
2(𝑛 − 𝛿(𝑙))2 , (4)

namely:
(3) Li:

𝑒20 = −0.1982754792, 𝑒21 = −0.1302870145,
𝑒30 = −0.07465200225, 𝑒31 = −0.05710578080, 𝑒32 = −0.05562970375,
𝑒40 = −0.03883874030, 𝑒41 = −0.03190061096, 𝑒42 = −0.03128127346,
𝑒50 = −0.02375325800, 𝑒51 = −0.02033207896, 𝑒52 = −0.02001600960,
𝑒60 = −0.01601242872, 𝑒61 = −0.01408066718, 𝑒62 = −0.03128127346;

(11) Na:

𝑒30 = −0.1888838814, 𝑒31 = −0.1115650818, 𝑒32 = −0.05592778605,
𝑒40 = −0.07245191330, 𝑒41 = −0.05146315410, 𝑒42 = −0.03140683790,
𝑒50 = −0.03800798912, 𝑒51 = −0.02949906632, 𝑒52 = −0.02008024064,
𝑒60 = −0.02335452320, 𝑒61 = −0.01909585773, 𝑒62 = −0.03140683790;

(19) K:

𝑒40 = −0.1595965400, 𝑒41 = −0.1010881942, 𝑒42 = −0.03366251684,
𝑒50 = −0.06516440980, 𝑒51 = −0.04810386124, 𝑒52 = −0.02122122550,
𝑒60 = −0.03517930894, 𝑒61 = −0.02802348772, 𝑒62 = −0.03366251684;
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(37) Rb:

𝑒50 = −0.1534672079, 𝑒51 = −0.09542857065, 𝑒52 = −0.03523536413,
𝑒60 = −0.06354834915, 𝑒61 = −0.04622131078, 𝑒62 = −0.06530578980;

(55) Cs:

𝑒60 = −0.1431368322, 𝑒61 = −0.09046170025, 𝑒62 = −0.2075805080,
𝑒70 = −0.06074477220, 𝑒71 = −0.04452676553.

As a result of splitting in the spectrum (4), the ordering of the spectral
(energy) levels with increasing energy changes in comparison with the ordering
in the hydrogen atom (3). This new ordering obeys the so-called Klechkovsky–
Madelung rule [14]–[16]. The relation of this order with the pairs (𝑛, 𝑙) of the
principal and orbital quantum number is phenomenologically described by
formula (4) and is determined by the increase of the pair (𝑛 + 𝑙, 𝑙): 1s, 2s, 2p,
3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7р, 8s, 5g. Here the
values 𝑙 = 0, 1, 2, 3, ... correspond to the indices 𝑠, 𝑝, 𝑑, 𝑓, ....
At the phenomenological level, the consideration of optical spectra of alkali

metal atoms leads to a necessity of using potential function in the form [13]:

𝑉 (𝑟) = −𝑒2

𝑟
(1 + 𝑐1 (𝑟𝑎

𝑟
) + 𝑐2 (𝑟𝑎

𝑟
)

2
+ 𝑐3 (𝑟𝑎

𝑟
)

3
+ ...) ,

where 𝑐1, 𝑐2, ... are constants determined by the distortion character of the
Coulomb field of the nucleus, 𝑟𝑎 being the Bohr radius (for hydrogen atom).

4. Pseudopotential method for description
of multielectron atoms

For atoms having more than one electron, even the simplest ones, the
Schrödinger equation can be solved directly neither analytically, nor by
numerical methods. For this reason, the study of spectra of multielectron
atoms is based on an approximate model. The approximation is based on the
idea of self-consistent field that implies independent motion of each electron
in a certain average field created by other electrons and atomic nucleus. A set
of orbitals used for constructing the wave function is referred to as atomic
configuration [11]. The most adequate scheme based on single-electron orbitals
and atomic configuration is the Hartree–Fock approximation.
In fact the meaning of configuration is to assign to the entire atom a set

of approximate integrals of motion, specified by set of labels {𝑛𝑗, 𝑙𝑗, 𝑍𝑗},
where the subscript 𝑗 enumerates the filled orbitals, and 𝑍𝑗 is the occupation
number, i.e., the number of electrons at the 𝑗-th orbital. The number of
exact integrals of motion is typically insufficient for complete classification.
Therefore, approximate but well-preserved integrals of motion are of primary
importance [11]. To find out which orbitals in an atom are filled, the Aufbau
rule should be used, namely, for ground state the distribution of electrons
over the orbitals should correspond to the minimal energy compatible with
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the Pauli principle. The result of applying the Aufbau rule directly depends
on the ordering of energy levels in the single-electron effective potential 𝑈𝑎(𝑟).
Far from the nucleus, the electron is subjected to the attractive Coulomb

potential of the atomic nucleus, shielded by all other electrons, so that

𝑈𝑎(𝑟) ∼ −1
𝑟

, 𝑟 ≫ 𝑟𝑎, (5)

where 𝑟𝑎 is the characteristic radius of the atom. Near the nucleus, the
shielding effect vanishes and the electron is attracted by the Coulomb potential
of a bare atomic nucleus

𝑈𝑎(𝑟) ∼ −𝑍
𝑟

, 𝑟 ≪ 𝑟𝑎.

Considering the outer (valence) electrons, it is possible to construct a model
of effective potential 𝑈𝑎(𝑟) based on the approximate behavior (5).
If the deviation of the effective single-electron potential 𝑈𝑎(𝑟) from the

dependence −1/𝑟 can be considered a small perturbation, then the spectrum
remains ordered like in a hydrogen atom. However, when considering the
periodic law this is not true, which is an evidence of strong deviations of the
effective potential from the Coulomb potential, leading to essential changes in
the spectrum. An overlap of groups of energy levels with different principal
quantum numbers n appears together with a new type of ordering according
to (𝑛 + 𝑙, 𝑛).
The notion of 𝑛-shell, i.e., states with the same principal quantum number

𝑛 arises from the fact that for pure Coulomb potential in a hydrogen atom
these states are energy degenerate. If the potential slightly differs from the
Coulomb one, the degeneracy is removed, but the energy levels with the
same 𝑛 remain densely grouped in the energy scale. In this case, the notion
of a shell remains physically significant. Otherwise, if the deviation from
Coulomb potential is large, a complete regrouping of energy levels occurs
and the hydrogen-like shells loose physical meaning, becoming merely formal
entities. On the contrary, the notion of ‘subshell’ labelled by a pair of quantum
numbers {𝑛, 𝑙} always remains significant for atoms, since the energy levels are
degenerate with respect to azimuthal quantum number 𝑚 in any spherically
symmetric potential.

A valence electron in an atom of alkali metal allows approximate quantum
mechanical description using a single-particle model:

[− ℏ2

2𝑚
∇⃗2 + 𝑉eff( ⃗𝑟)] 𝜓( ⃗𝑟) = 𝜀𝑛𝑙𝜓( ⃗𝑟). (6)

For the first-order approximation the effective single-particle potential in
the Thomas–Fermi method can be expressed as

𝑈𝑇 𝐹
𝑎 (𝑟) = 𝑍

𝑟
𝜒(𝑘𝑟), 𝑘 = (8

√
2

3𝜋
)

2/3

𝑍1/3.

through a table-defined function 𝜒(𝑟).
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Since the middle of the last century, researchers have been looking for
a theoretical justification for the fact that in a many-electron atom the
single-particle potential has a form that provides the “Aufbau rule” – the
Klechkovsky–Madelung rule. In a number of articles and then in the book [15],
Klechkovsky constructed this justification, starting from the Hartree–Fock
approximation. The pseudopotential is expressed through the tabular function
𝜒, which is approximated by the expression:

𝜒(𝑥) = (1 + 𝑎𝑥)−2.

At the same time, a number of researchers concluded that the desired
pseudopotential has the form:

𝑈𝑍
𝑎 (𝑟) = − 𝑍

𝑟 (1 + 𝑟
𝑅)2 , 𝑅 = 1

𝑎
√

𝑍
( 3𝜋

8
√

2
)

2/3

.

Demkov and Ostrovsky [17], [18] substantiated the existence of such a single-
particle potential proceeding from the geometric-symmetry model of the
hydrogen atom by V.A. Fock [19].

𝑈𝐷𝑂
𝜇 (𝑟) = − 2𝜈

𝑟2𝑅2 [( 𝑟
𝑅

)
𝜇

+ (𝑅
𝑟

)
𝜇
]

−2

. (7)

In [17], [18] Demkov and Ostrovsky established that equation (7) provides
the most precise description of Klechkovsky–Madelung rule at 𝜇 = 1/2. In
subsequent papers [20], [21] Demkov and Ostrovsky’s proof was questioned,
but the result was confirmed.

Remark 1. Subsequently, when considering the multielectron atom in the
framework of the quantum field theory, Kholodenko et al. [22], [23] confirmed
the correctness of the Demkov–Ostrovsky proof, and also generalized this
result to such a degree that he began to describe not only the Klechkovsky–
Madelung rule, but also exceptions to it (see also [24], [25]).

These potentials are in good agreement with the experimentally observed
spectra:

𝜀𝑛𝑙 = − 1
2(𝑛 + 𝛿(𝑙))2 = − 1

2𝑛2
eff

.

in Hartree atomic units.
The solution obtained is not universal, since there are exceptions to the

Madelung rule in transition metals, as well as among lanthanides and actinides.
Quantum-mechanically, these exceptions, as well as the rule itself, are still
considered using relativistic Hartree–Fock calculations. The results obtained
do not yet detail the exceptions. Kholodenko and Kaufman [23], using
quantum field theory, showed that the Demkov–Ostrovsky potential does
indeed give the correct answer. In addition, thanks to work [26], it became

possible to identify the Demkov–Ostrovsky potential 𝑈𝐷𝑂
1/2 (𝑟) with the Hartree–

Fock potential.
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Remark 2. It was shown in [22] that, confining oneself to quantum me-
chanical methods, it is impossible to derive Madelung’s rule with exceptions.
Madelung’s rule and its exceptions contain much more information than is
required for its use in chemistry. Recall that the invention of quantum me-
chanics in 1925–1926 was initially driven by the needs of atomic physics.
Subsequently, quantum mechanics was extended to quantum field theory,
which led to the development of the Standard Model of particle physics. Not
surprisingly, particle physics methods have recently been applied to the pe-
riodic table of elements [25], [27]. In [22], it was demonstrated that the
Madelung rule and its exceptions can be described within the framework of
this model.

5. Modeling the measured energy spectrum of alkali
metal atoms

So far, we have mainly dealt with the study of the quantum-measured
energy state of the valence electron in the hydrogen atom. The energy
spectrum of a non-measured (isolated) hydrogen atom has the form 𝜀𝑛𝑙 =
−1/(2𝑛2), degenerate with respect to the orbital quantum number 𝑙. The
measurement procedure slightly perturbs potential energy 𝑉0( ⃗𝑟) = −1/𝑟 of
the isolated hydrogen atom to 𝑉𝜌( ⃗𝑟) = −1/𝑟 + 𝛿𝑉𝜌( ⃗𝑟), so that the perturbed
spectrum of the hydrogen atom subjected to measurement has the form
𝜀𝜅

𝑛𝑙 = −1/(2𝑛2) + 𝛿𝐸1
𝜅. Under such weak perturbation, the ordering of

spectral lines remains unchanged.

However, even in first spectral lines of alkali metals the Klechkovsky–
Madelung ordering is observed.

In “hydrogen-like” alkali metal atoms the spectral terms have the form

𝐸𝑍
𝑛𝑙 = − 𝑅

2(𝑛 + 𝜎𝑍
𝑙 )2 .

In the process of measurement, the “measured” energy spectrum takes the
form

𝐸𝑍
𝑛𝑙,𝜅 = − 𝑅

2(𝑛 + 𝜎𝑍
𝑙 )2 + 𝛿𝐸𝑍

𝜅 ,

where the contributions 𝛿𝐸1
𝜅 and 𝛿𝐸𝑍

𝜅 are obtained from convolution 𝑉 (𝑟) ∗
𝑊{𝜑𝑘}(𝑞, 𝑝), where

𝑉 1(𝑟) = −1
𝑟

;

𝑈𝑍
𝑎 (𝑟) = − 𝑍

𝑟 (1 + 𝑟
𝑅)2 , 𝑅 = 1

𝑎
√

𝑍
( 3𝜋

8
√

2
)

2
3

. (8)

Therefore, the Weyl–Kuryshkin quantization rule is adequate for alkali
metals to the same degree as adequate is potential 𝑉𝜅(𝑟, 𝜗) that takes into
account small corrections to the centrally symmetric potential.
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Ref. [23] shows the coincidence of the Demkov–Ostrovsky potential (7)
with the Hartree–Fock potential (6). Similar to the potential 𝑉𝜌( ⃗𝑟) from the
Kuryshkin–Wodkiewicz quantization rule [28], potential 𝑉 𝑍( ⃗𝑟) from equa-

tion (8) is an 𝐻̂0-compact perturbation of the potential 𝑉 1( ⃗𝑟) that equals
zero at infinity (see the papers by B. Simon [29], [30] about Kato theorems).

Thus, potential 𝑈𝐷𝑂
𝜇 (𝑟) satisfies the conditions of the theorem from Ref. [31].

6. Kuryshkin–Wodkiewicz quantum measurement
model for alkali metal atoms and ions with one valence

electron

For valence electron in a hydrogen atom the potential has the form
𝑉1(𝑟) = −1/𝑟 and the energy spectrum is 𝜀𝑛 = −1/(2𝑛2). In the pro-
cess of measurement with an instrument whose quantum part is in the state

𝜌 = ∑ 𝑐𝑗 ∣𝜓𝑗⟩⟨𝜓𝑗∣ both the potential and the spectrum are perturbed:

𝜌 ∶ 𝑉1(𝑟) ↦ 𝑉𝜌(𝑟) = 𝑉1(𝑟) + 𝛿𝑉𝜌(𝑟),

𝜌 ∶ 𝜀𝑛 = − 1
2𝑛2 ↦ 𝜀𝜌

𝑛𝑙 = − 1
2𝑛2 + 𝛿𝜀𝜌

𝑛𝑙.

In this case 𝑉𝜌(𝑟) = (𝑉1 ∗ 𝑊𝜌) (𝑟);

𝑂𝜌(𝐻) = 𝑂𝑊(𝐻 ∗ 𝑊𝜌) = 𝑂𝑊 ((𝑝2

2
− 1

𝑟
) ∗ 𝑊𝜌) =

= −1
2

∇2 + 𝐶𝜌
̂𝐼 + (𝑉𝜌 = 𝑉1 ∗ 𝑊𝜌 = 𝑉1 + 𝛿𝑉𝜌) ̂𝐼.

For a valence electron in an atom of alkali metal, the potential has asymp-
totic expressions

−𝑍
𝑟

←−−
𝑟→0

𝑉 𝑍(𝑟) −−−→
𝑟→∞

−1
𝑟

,

approximately equals 𝑉eff(𝑟) from the Hartree–Fock method and conventionally
has the form

𝑈𝐷−𝑂
1/2 (𝑟) = − 2𝜈

𝑟2𝑅2 [√ 𝑟
𝑅

+ √𝑅
𝑟

]
−2

. (9)

Then the spectrum is traditionally presented in the form

𝜀𝑍
𝑛𝑙 = − 1

2 (𝑛𝑍
eff)

2
𝑛𝑙

= − 1
2 (𝑛 + 𝜎𝑍

eff)
2
𝑛𝑙

. (10)

According to the theorem of Ref. [31], there exists such an abstract state

𝜌𝑍 = ∑ 𝑓𝑗 ∣𝜓𝑗⟩⟨𝜓𝑗∣, that

𝜌𝑍 ∶ 𝑉1(𝑟) ↦ 𝑉𝑍(𝑟) = (𝑉1 ∗ 𝑊𝜌𝑍) (𝑟) = 𝑉1(𝑟) + 𝛿𝑉𝑍(𝑟), (11)
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𝜌𝑍 ∶ 𝜀𝑛 = − 1
2𝑛2 ↦ 𝜀𝑍

𝑛𝑙 = − 1
2 (𝑛𝑍

eff)
2
𝑛𝑙

= − 1
2 (𝑛 + 𝜎𝑍

eff)
2
𝑛𝑙

. (12)

Now let us apply the procedure of measuring the energy spectrum of the
valence electron in an alkali metal atom with an instrument whose quantum

part is in the state 𝜌𝑎𝑝 = ∑ 𝑐𝑗 ∣𝜓𝑗⟩⟨𝜓𝑗∣. As a result of the measurement the
perturbation of the pseudopotential and the spectrum will occur:

𝜌𝑎𝑝 ∶ 𝑉𝑍(𝑟) ↦ 𝑉 𝑍
𝜌𝑎𝑝

(𝑟) = (𝑉𝑍 ∗ 𝑊𝜌𝑎𝑝
) (𝑟) = 𝑉𝑍(𝑟) + 𝛿𝑉 𝑍

𝜌𝑎𝑝
(𝑟), (13)

𝜌𝑎𝑝 ∶ 𝜀𝑍
𝑛𝑙 = − 1

2 (𝑛𝑍
eff)

2
𝑛𝑙

↦ 𝜀𝑍
𝑛𝑙 + (𝛿𝜀𝑍

𝜌𝑎𝑝
)

𝑛𝑙
.

Let us rewrite relation (13) in more detail

𝑉 𝑍
𝜌𝑎𝑝

(𝑟) = (𝑉𝑧 ∗ 𝑊𝜌𝑎𝑝
) (𝑟) = ((𝑉1 ∗ 𝑊𝜌𝑧) ∗ 𝑊𝜌𝑎𝑝

) (𝑟) =

= ((𝑉1 + 𝛿𝑉𝑍) ∗ 𝑊𝜌𝑎𝑝
) (𝑟) = 𝑉1(𝑟) + 𝛿𝑉𝜌(𝑟) + (𝛿𝑉𝑧 ∗ 𝑊𝜌𝑎𝑝

) (𝑟).

In this case

𝐻𝑍 ∗ 𝑊𝜌𝑎𝑝
= (𝐻1 ∗ 𝑊𝜌𝑍

) ∗ 𝑊𝜌𝑎𝑝
= ((𝑝2

2
− 1

𝑟
) ∗ 𝑊𝜌𝑍

) ∗ 𝑊𝜌𝑎𝑝

and

𝑂𝜌(𝐻) = 𝑂𝑊(𝐻 ∗ 𝑊𝜌) = 𝑂𝑊 ((𝑝2

2
− 1

𝑟
) ∗ 𝑊𝜌) =

= −1
2

∇2 + 𝐶𝜌
̂𝐼 + (𝑉𝜌 = 𝑉1 ∗ 𝑊𝜌 = 𝑉1 + 𝛿𝑉𝜌) ̂𝐼.

7. Discussion

Ref. [28] describes a program calculating elements of the Ritz matrix and
storing them in external files. According to the Ritz method, the eigenvalues
of the Ritz matrix are spectral values of the quantity under study, i.e., the
energy. This algorithm consists in solving generalized eigenvalue problem
𝑀 ⃗𝑥 = 𝐵 ⃗𝑥, where 𝑀 is the Ritz matrix and 𝐵 is the matrix of pair scalar
products of auxiliary functions in the Kuryshkin quantum mechanics. The
program allows calculating Ritz matrices of arbitrary dimension. However,
there are hardware limitations. To date the calculations are possible for
matrix dimension of 55 and 91. Parameter 𝐸0 is the only one to be fitted to
experimental data. For example, Figures 1 and 2 show the dependences of
discrepancies on 𝐸0 for first few energy levels of lithium atom and Figure 3 for
sodium atom. The discrepancy functions are seen to have expressed minima
that determine the effective fitted values of the parameters.
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Figure 1. Quadratic discrepancy versus

parameter 𝐸0 for a group of first four

energy levels of a lithium atom

Figure 2. Quadratic discrepancy versus

parameter 𝐸0 for a group of first 8 energy

levels of a lithium atom

Figure 3. Quadratic discrepancy versus parameter 𝐸0 for a group of first 4 energy levels

of a sodium atom
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Let us describe an algorithm for restoring the effective potential parameters
for a valence electron in an alkali metal atom and the parameters of the energy
spectrum perturbation of this valence electron in the process of measurement.

1. Known “theoretical” spectrum (10) and (12) of the valence electron in an

alkali metal atom, we can restore 𝜌𝑍 = ∑ 𝑓𝑗 ∣𝜓𝑗⟩⟨𝜓𝑗∣ from (12):
— for individual “segments” of the spectrum (10) and (12);
— for the “initial part” of the spectrum (10) and (12) from the spectrum
ordered according to the Klechkovsky–Madelung rule.

2. Restore 𝑉𝑍(𝑟) = (𝑉1 ∗ 𝑊𝜌𝑍)(𝑟) from (11).
3. Compare the restored pseudopotential with the effective pseudopoten-
tial (9) (current verification).

4. Restore 𝜌𝑎𝑝 = ∑ 𝑐𝑗 ∣𝜓𝑗⟩⟨𝜓𝑗∣ from individual segments of table-defined

spectrum using the calculated {𝑓𝑍
𝑗 } from item 1:

𝑂𝜌𝑎𝑝
(𝐻𝑍) = 𝑂𝑊 (𝐻𝑍 ∗ 𝑊𝜌𝑎𝑝

) = 𝑂𝑊 ((𝐻1 ∗ 𝑊𝜌𝑍
) ∗ 𝑊𝜌𝑎𝑝

) .

5. Check by means of the calculated probabilities of “optical transitions”
and compare with the data from [32] (final verification).

8. Conclusion

In Refs. [2], [28] the Kuryshkin–Wodkiewicz model of quantum measurement
was implemented in application to the quantum Kepler problem. Earlier the
quantum measurement model in certain modifications has been implemented
in application to the quantum oscillator problem [3], [4]. In the present paper
the Kuryshkin–Wodkiewicz model, realizing the Weyl–Kuryshkin quantization
rule [2], [28], is generalized to quantum systems with one valence electron,
e.g., atoms of alkali metals. The analysis is based on experimental data on
the energy ordering of electrons in an atom according to the Klechkovsky–
Madelung rule and on the substantiation of a single-particle potential model
for describing the energy spectrum of optical electrons in alkali metal atoms.
The author of Ref. [31] obtained a representation of the perturbation of

a single-particle potential in the form of a convolution of the potential of an
electron in a hydrogen atom with the Wigner function of a certain effective
state of the core in an alkali metal atom. This representation allows reducing
all calculation algorithms for alkali metals to the corresponding algorithms
for the hydrogen atom. The proof of the model consistency is based on two
Kato theorems [29], [30]. In the course of the proof, explicit formulas were
obtained for the discrete spectrum of a valence electron for various spectral
series, depending on the serial parameters of the disturbance of the spectrum
of an isolated object in the process of quantum measurements.
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Модель квантовых измерений
Курышкина–Вудкевича для атомов щелочных

металлов

А. В. Зорин

Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Конструктивная форма модели квантовых измерений Курышкина–Водкевича
ранее была подробно разработана для квантовой задачи Кеплера. Для более
сложных квантовых объектов такая конструкция неизвестна. В то же время стан-
дартная (неконструктивная) модель квантовых измерений Холево–Хелстрома
подходит для любого квантового объекта. В данной работе конструктивная
модель квантовых измерений обобщена на более широкий класс квантовых
объектов, то есть на оптический спектр атомов и ионов с одним валентным
электроном. Анализ основан на экспериментальных данных об энергетическом
упорядочении электронов в атоме по правилу Клечковского–Маделунга и на
обосновании одночастичной потенциальной модели для описания энергетическо-
го спектра оптических электронов в атомах щелочных металлов. Представление
возмущения одночастичного потенциала в виде свертки потенциала электро-
на в атоме водорода с функцией Вигнера некоторого эффективного состояния
остова в представлении атома щелочного металла позволяет редуцировать все
алгоритмы расчета для щелочных металлов к соответствующим алгоритмам
для атома водорода.

Ключевые слова: модели квантовых измерений, энергетический спектр ато-
мов щелочных металлов, метод одночастичного потенциала, модель квантовых
измерений, возмущение дискретного спектра наблюдаемой


