?’ RUDN Journal of MIPh 2018 Vol. 26 No. 2 167-175
Becruuk PYJIH. Cepusi MU® http://journals.rudn.ru/miph

UDC 517.937, 517.928.2, 519.217.2
DOI: 10.22363/2312-9735-2018-26-2-167-175
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In this paper we consider the dynamics of large-scale queueing systems with an infinite number
of servers. We assume that there is a Poisson input flow of requests with intensity NA. We
suppose that each incoming request selects two any servers randomly and at the next step of an
algorithm is sending this request to the server with the shorter queue instantly. A share uy(t) of
the servers that have the queues lengths with not less than k can be described using a system of
ordinary differential equations of infinite order. We investigate this system of ordinary differential
equations of infinite order with a small real parameter. A small real parameter allows us to
describe the processes of rapid changes in large-scale queueing systems. We use the simulation
methods for this large-scale queueing systems analysis. The numerical simulation show that
the solution of the singularly perturbed systems of differential equations have an area of rapid
change of the solutions, which is usually located in the initial point of the problem. This area of
rapid function change is called the area of the mathematical boundary layer. The thickness of
the boundary layer depends on the value of a small parameter, and when the small parameter
decreases, the thickness of the boundary layer decreases. The paper presents the numerical
examples of the existence of steady state conditions for evolutions w;(t) and quasi-periodic
conditions with boundary layers for evolutions wu;(¢).

Key words and phrases: countable Markov chains, large-scale queueing systems, sin-
gular perturbed systems of differential equations, differential equations of infinite order, small
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Introduction

The current study of service networks with complex sending discipline in [1-3] transport
networks [4-6] and the asymptotic behavior of Jackson networks [7] handled with the
problematic of verifying the global convergence of the solutions of certain infinite systems
of ordinary differential equations to a time-independent solution. In [8] the countable
systems of differential equations with bounded Jacobi operators are studied and the
necessary settings of global stability and global asymptotic stability was found. In [9] an
infinite-server queuing system with a doubly stochastic Poisson input flow is considered.
Assuming that the service time does not have expectation, limit theorems for the number
of occupied servers is proven. As a consequence, limit theorems for systems is obtained in
which the input flow intensity is a regenerative process. In [10] an infinite-server queueing
system where customers come by groups of random size at random i.d. intervals of time
is considered. Assuming that the number of requests in a group and intervals between
their arrivals can be dependent, service times have a regularly varying distribution with
infinite mean. Limit theorems for the number of customers in the system and prove limit
theorems under appropriate normalizations are considered. In papers [11-13] the authors
built various models of queueing systems and considered their dynamics.

In paper [14] we examined the singular perturbed structures of ordinary differential
equations of infinite order of Tikhonov-type
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with the initial conditions x(to) = gz, y(to) = gy, where z, g, € X, X Cly and y, g, € Y,
Y € R, t € [to,t1] (to < t1), to, t1 € T, T € R, g, and g, are given vectors, € > 0
is a small real parameter.

In this paper we apply Dobrushin approaches from [1-3]. We consider the dynamics
of large-scale queueing systems that consist of infinite number of servers with a Poisson
input flow of requests of intensity NA. We can use an algorithm that selects two any
servers for each incoming request and sent it to one of the servers with the shorter queue
instantly. We suppose that service time has mean 1/u with exponential distribution. In
this case a share uy(t) of the servers that have the queues lengths with not less than &
can be described using a system of ordinary differential equations of infinite order. We
investigate this system of ordinary differential equations of infinite order with a small real
parameter. A small real parameter allows us to describe the processes of rapid changes
in large-scale queueing systems. Tikhonov type Cauchy problem for this system with
small parameter ¢ and initial conditions is investigated.

We investigate the truncation system of this ordinary differential equations of infinite
order with a small real parameter order N. Tikhonov type Cauchy problem for this
truncation system with small parameter € and initial conditions is used for the simulation
of behavior solutions and for analysis of large-scale queueing systems with taking into
account parameters A\, u, €.

1. Queueing Systems with Infinite Number of Servers

The basic model considered there is a queueing system Sy, with N identical infinite-
buffer FCFS (First-Come, First-Served) single-servers, with a Poisson arrival flow of rate
N and with i.i.d. exponential service times of mean 1/u, where 0 < A < u. Upon its
arrival each task chooses m servers at random (i.e., independently of the pre-history of
the queueing system (QS) and with probability 1/(N™)) and then selects, among the
chosen ones, the server with the lowest queue-size, i.e., the lowest number of tasks in the
buffer (including the task in service). If there happen to be more than one server with
lowest queue-size, the task selects one of them randomly.

One is interested in the “typical” behavior of a server in Sy, as N — oo. Formally, it
means that V¢t > 0 and k = 0, 1, .. ., we consider the fraction g (t) = My (t)/N where My(t)
is the (random) number of servers with the queue-size k at time ¢. Clearly, 0 < gx(t) < 1,
Y ork(t) =1; and Q(t) = (qx(t)), t > 0, forms a Markov process (MP). Technically, it is
more convenient to pass to the tail probabilities r(t) = > ik Qk(t); the state space of the
corresponding MP Un (t) = (fr(t)),t > 0, is the set Uy of non-increasing non-negative
sequences u = (ug, k= 0,1,...) with ug = 1, >, _; up < oo and with the u;’s multiple
of 1/N, which implies that u; = 0 for all k£ large enough. It is convenient to prolong
the sequences u € Uy to the negative k’s by the value 1.

The generator of {Uy(t)} is an operator A acting on functions f : Uy — C! and
given by

Anf@) =N 37 (s~ i) |f (w5~ fw)] +

k>0

FAN ST (1) — (ui)?) [f (u + % - f(u)ﬂ )

k>0

Here, e, stands for the sequence with the k-th entry 1 and all others 0, the addition of
the sequences is componentwise. Process {Un (t)} is positive-recurrent and thus possesses
a unique invariant distribution, my; given any initial distribution o, the distribution of
Un (t) approaches my as t — oo. The main result of [1] is that, as N — oo, the expected
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value E, 7 (t) converges to the value {ax}, where

A\ =1/ (m=1)
o = () k>0, (2)
7

Pictorially speaking, it means that, as N — oo, an “average” server in the QS will
have k or more tasks in the buffer with probability ag.

It is interesting to compare Sy with another queueing system L, where the arriving
task chooses the server completely randomly (i.e., independently of the pre-history and
with probability 1/N). Clearly, L is equivalent to an isolated M /M /oo queue with the
arrival and service rates A and u, respectively, which justifies omitting subscript N in
this notation. More precisely, the average server in L will have k or more tasks in the
buffer with the geometrical probability

A F
a0:<> , k=1, 3
o (3)

(independently of N), which is much larger than a.

In fact, as was shown in [1], the whole process {Un ()} is asymptotically deterministic
as N — oco. More precisely, let U denote the set of the non-increasing non-negative
sequences u = (uy, k € Z) with up = 1 for k < 0 and >, qur < co.Then, if the
distribution w of initial state Un(0) approaches a Dirac delta-measure concentrated
at a point g = {gr} € U, the distribution of {Un(t)} is concentrated in the limit at
the “trajectory” u(t) = {ug(t)}, t > 0, giving the solution to the following system of
differential equations

we(t) = p (unsr (1) = u(t) + A ((we-1(1))* = (ue(t)?) | (1)

up(t) = 0,ur(0) =9gx 20, k=1,2,..., t=0,
where g = {gx},—; is a numerical sequence (1 = g1, gx > gr+1, K =1,2,...) [1]. Point
a = (ag) (see (2)) is a (unique) fixed point for system (4) in U.

These results illustrate the essence of the mean-field approximation for QS Sy. Equa-
tions (4) describe a “self-compatible” evolution of vector u(t), or, equivalently, of the
probability distribution q(t) = {qx(t)} defined by qr(t) = ug(t) — ug+1(t), t > 0,
k=0,1,.... As before, u(t) is simply the sequence of the tail probabilities for q(t).

We can compare system (4) with the linear system

Uk(t) = 1 (k1 () — yr(t)) + A (yr—1(t) — yk(?)), (5)

(where k > 1) describing the evolution of the probability distribution q"(t) =
(@2(1), q¥(t) = yr(t) — yr+1(t)) in a standard M/M/1/oo queue with the arrival and
service rates A and p, respectively. The p-terms in (4) and (5) are the same; they corre-
spond with the departure of the tasks and ’push’ the probability mass in q(t) and q(®)(¢)
towards k = 0. On the other hand, the A-terms (different in both SQ) correspond with
the arrival of the tasks; these terms shift the probability mass to larger k’s. The A-term
in (4) is smaller than the one in (5) when u(t) is small; pictorially speaking, system (4)
provides (for the same values of A and p) more “protection”, for large k, against the shift
to the right, which may lead to an “explosion”, when the relation Zk>1 ug(t) < oo or
> ks1 Yk(t) < 0o may fail as t — oo. Because of this, the entries a of sequence a (see
(2)) giving the fixed point of (4) decrease “super-exponentially”, in contrast with the
exponential decay of the tail probabilities in the fixed point a® = (a?) of (5).
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2. Queueing Systems with Infinite Number of Servers
and a Small Parameter

Let’s consider a system that consists of N servers with a Poisson input flow of requests
of intensity INA. Each request arriving to the system randomly selects two servers and
is instantly sent to the one with the shorter queue. The service time is distributed
exponentially with mean ¢ = 1/u. Let ug(t) be a share servers that have the queues
lengths with not less than k. It is possible to investigate the asymptotic distribution of the
queue lengths as N — oo and A < 1 [1]. The considered system of the servers is described
by ergodic Markov chain. There is a stationary probability distribution for the states of
the system and if N — oo the evolution of the values ux(t) becomes deterministic and
the Markov chain asymptotically converges to a dynamic system the evolution of which
is described by system of ordinary differential equations of infinite order

A (t) = o (up1 () = un(t)) + A ((un-1(£)* = (un(t))?) - (6)

For this system of ordinary differential equations of infinite order we can formulate
Cauchy problem in the form

ap(t) = p (up41(t) = ug(t) + X ((up—1(1)* = (ur(t))?) ,
(t) = 0 - (7)
up(t) =0, wup(0)=gr >0, k=1,2,..., t=0,

where g = {gx} 4, is a numerical sequence (1 = g1, gk > gr+1, k = 1,2,...) [1].
We can investigate Cauchy problem for system of ordinary differential equations of
infinite order with small parameter such form

n(t) = p(up s (t) = ug(t) + A ((up—1(8)* = (ur(t)?), k=0,1,...,n—1,
Un(t) = 1 (Unt1(t) = un(t)) + A ((un—1(t))? (Un (t))?) (8)
eUr(t) = 1 (Up11(t) = Ug(1)) + A ((Ug— 1(t))2 Ui(t)?), k=n+1,...,

ug(0) =g =20, k=0,1,2,....n, Up(0)=gr =20, k=n+1,...,

where € > 0 is a small parameter that bring a singular perturbation to the system (7),
which allows us to describe the processes of rapid change of the systems.

3. Queueing Systems with Finite Number of Servers and a
Small Parameter

Using (8) we can rewrite system of differential equations of order N in the form

we(t) = p(uprr (8) — u(t)) + A ((ue—1(1))® = (u(®))?) ., k=0,1,...,n—1,
Un(t) = p1 (Upg1(t) = un(t)) + A ((un—1())* = (un(t))?) . (9)
Up(t) = p (Up1(t) = Uk(t)) + X (U1 (1) = (Uk(1))?), k=n+1,...,N.

For this truncation system of ordinary differential equations of order N we can formulate
Cauchy problem in the form

Wk (t) = p(uprr (8) = up(t)) + A ((ue—1(1))? = (u(t))?) ., k=0,1,...,n—1,
un(t) = N(Un+1(t) - Un(t)) +A ( Un— 1 t))Z (un(t)) )

eUk(t) = p (Upt1(t) — Ug(t)) + A (Ur—1 (1)) — (Uk(t)) ’), k=n+1,...,N,
() =g >0, k=0,1,2,....,n, Up(0)=gp>0, k=n-+1,...,N.
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The numerical analysis was carried out using the adaptive step Runge-Kutta integration
method, which is one of the most commonly used methods for the numerical solution
of the singularly perturbed system of differential equations.

The numerical example is presented in the figure (see Fig. 1, 2) where n = 7, N = 10,
A=05u=10,g0=1, g, =1-0.1k, k= 0,9 and a small parameter ¢ = 0.1 (Fig. 1),
e = 0.01 (Fig. 2), e = 0.001 (Fig. 3). In these numerical examples we can see the existence
of regularly perturbed solutions u;(t), i = 0,5 and singularly perturbed solutions u;(t),

i = 6,10 with boundary layers.

1.0

—Yr— — 4, (0)=1.0
----- w009
""" ug (0) =0.8
""""" uy (0) =0.7
—  u5(0)=0.6
--- ug(0)=0.5
..... u;(0)=0.4
------- ug(0) =0.3
—  ug(0)=0.2
- uy(0)=0.1
é 10

0.8 w7200

L (0)=10
——- 4y (0)=0.9
----- us (0) =0.8
-------- uy (0) =0.7
— 4y (0)=0.6
—-= ug(0)=0.5
| --- up(0) =0.4
-------- us(0) =0.3
—  uy(0)=0.2
—- uy(0)=0.1
8 10

Figure 2. Evolution analysis of u; (¢ = 0.01)
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1.0 . .
e o —  ———wur— — u;(0)=1.0
ogl T e wy | " u2(0)=0.9
----- u3 (0) =0.8
-------- uy (0) =0.7
—  u;(0)=0.6
-—- ug(0)=0.5
rrrrr u,(0) =0.4
-------- ug(0) =0.3
—  1y(0) =0.2
--= uy(0)=0.1
8 10

Figure 3. Evolution analysis of ux (e = 0.001)

The numerical simulation shows that the solution of the singularly perturbed systems
of differential equations have an area of rapid change of the function, which is usually
located in the initial point of the problem. This area of rapid function change is called the
area of the mathematical boundary layer. The thickness of the boundary layer depends
on the value of a small parameter, and when the small parameter decreases, the thickness
of the boundary layer decreases. The integration area is divided into external (outside the
boundary layer) and internal (inside the boundary layer). The solution of the singularly
perturbed equation is sought in the form of a solution suitable for the outer domain,
which is then refined in the vicinity of the boundary point where the boundary layer
is located. The numerical examples have shown the existence of regularly perturbed
solutions and singularly perturbed solutions with boundary layers for evolutions u;(t).

Conclusions

We investigate the dynamics of large-scale queueing systems that consists of infinite
number of servers with a Poisson input flow of requests of intensity NA. Each request
arriving to the system randomly selects two servers and this request is instantly sent
to the one with the shorter queue. We suppose that service time has mean 1/p with
exponential distribution. In this case a share uy(t) of the servers that have the queues
lengths with not less than & can be described using a system of differential equations
of infinite order. Tikhonov type Cauchy problem for this system with small parameter
€. Tikhonov type Cauchy problem for this system with small parameter ¢ and initial
conditions is investigated. We use the simulation methods for behavior solutions analysis
with taking into account parameters A, p, e. The numerical examples have shown the
existence of steady state conditions for queueing systems with an infinite number of
servers and singularly perturbed conditions with boundary layers for evolutions u;(t)
with a small parameter.
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WUccnenoBanme cucreM MacCOBOTO OOCIIy>KUBaHUS C OECKOHEYHBIM
91CJIOM NPUOOPOB U MaJIbIM ITapaMeTpPOM

C. A. Bacuaswes, I'. O. IlapeBa

Kagedpa npuksradnoti ungopmamury u meopuy, 6epoammocmet
Poccutickuti yrusepcumem Opystcovl Hapodos
ya. Muxayxo-Maxaas, 0. 6, Mockea, Poccus, 117198

B mammoit paboTe paccMaTpUBaeTCs JUHAMIKA KPYITHOMACITTAOHBIX CHUCTEM MaCCOBOTO OOCIIYy-
JKUBaHUsT ¢ OECKOHEYHBIM YUCJIOM OOCJIY>KHBaOIMX pubopos. [Ipeamnomaraercs, 9To numeercst
BXOJISAIIUI TTyaCCOHOBCKUI MOTOK 3asBOK C MHTEHCUBHOCTHIO N . Takrke mpeamoiaraeTcs, 9To
KaXK/asl 3adBKa, [IOMAB B CUCTEMY, BHIOMPAET IBa MPOU3BOJIBHBIX MPUOOpa CIIyIaHBIM 00pa30M
7 BBIOMPAET It OOCIIyKUBaHusi TpUbop ¢ 6osiee KOPOTKOi odepenpo. Jlomst uy () mpubopos ¢
JUINHOMN O4Yepe/ii He MeHee 9eM k MOYKHO OIHCATh C ITOMOIINBIO CHCTEMbI OOBIKHOBEHHBIX JAuddepeH-
MAJIBHBIX YpaBHEHUI OECKOHETHOTO mopsiaka. 1Ipeamomaraercs, 9To 9Ta cucTeMa OOBIKHOBEHHBIX
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nuddepeHInaIbHbIX YPABHEHNM OECKOHEYHOTO TOPSAIKA C MAJIBIM BEIECTBEHHBIM IIapaMeTPOM,
KOTODBIil TIO3BOJISIET OIMUCATH MPOIECCHI OBICTPBIX U3MEHEHUN B CHCTEMaX MaCCOBOTO OOCTyKUBA-
Husl. B 9T0it paboTe UCIIOIb3YIOTCS METO/bI NCIEHHOTO MO/ICJIMPOBAHUS JJIsI aHAJIN3a TAKOTO
KJIacCa CHCTEM MAaCCOBOIO OOC/IYKUBaHUS. UMCJIEHHBIN aHAJIM3 IT0KA3aJI, 9YTO PEIIeHNe PAaCcCMaT-
PUBAEMBIX CHHTYJISIPHO BO3MYIIEHHBIX CUCTEM auddEPEHITNATBHBIX YPABHEHUSI UMEIOT 001aCTh
OBICTPOrO M3MEHEHUsI PENIeHHl, KOTOpasl HAXOAHUTCS B HAYAJIbLHON 00JIACTH MHTETPHUPOBAHUSA
3a7a9u. DTa 30Ha OBICTPOTO M3MEHEHUsI PEIIeHUI HA3hIBAETCsT 0OJIACTHIO TIOTPAHUTHOTO CJIOST.
TosmuHa TOrpaHUYHOrO CJI0s1 3aBUCHUT OT BEJIMYMHBI MAJIOrO IIapaMeTpa, U KOI/ia MaJiblil mapa-
METP YMEHBIIIAeTCs, TO TOJIINUHA IOTPAHUYHOIO CJIOSI TaKKe yMeHbInaeTcda. B pabore npuseneHbI
YUCJIEHHBIE IPUMEDDI CYIIECTBOBAHMS CTAIMOHAPHBIX COCTOSIHUMN JIJIsI 9BOJIIOIMN perteHuit u; (t),
a TaKyKe PEeIIeHUs C IMOTPAHUIHBIMU CJIOSIMHU.

KuroueBbie ciioBa: CUYETHBIE MAPKOBCKUE IEIM, KPYITHOMACIITAOHBIE CUCTEMBI MaCCOBOTO
006C/Ty>KMBaHUsI, CHHTYJIsIDHbIE BO3MYIIIEHHBIE CUCTEeMbBI ud depeHInaabHbIX ypaBuennii, nudde-
peHIAIbHbIE YPABHEHMS OECKOHETHOIO MOPSIAKA, MAJBIN mapaMerp
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