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Multidimensional integrals arise in many problems of physics. For example, mo-
ments of the distribution function in the problems of transport of various particles
(photons, neutrons, etc.) are 6-dimensional integrals. When calculating the coeffi-
cients of electrical conductivity and thermal conductivity, scattering integrals arise,
the dimension of which is equal to 12. There are also problems with a significantly
large number of variables. The Monte Carlo method is the most effective method
for calculating integrals of such a high multiplicity. However, the efficiency of this
method strongly depends on the choice of a sequence that simulates a set of ran-
dom numbers. A large number of pseudo-random number generators are described
in the literature. Their quality is checked using a battery of formal tests. How-
ever, the simplest visual analysis shows that passing such tests does not guarantee
good uniformity of these sequences. The magic Sobol points are the most effective
for calculating multidimensional integrals. In this paper, an improvement of these
sequences is proposed: the shifted magic Sobol points that provide better unifor-
mity of points distribution in a multidimensional cube. This significantly increases
the cubature accuracy. A significant difficulty of the Monte Carlo method is a pos-
teriori confirmation of the actual accuracy. In this paper, we propose a multigrid
algorithm that allows one to find the grid value of the integral simultaneously with
a statistically reliable accuracy estimate. Previously, such estimates were unknown.
Calculations of representative test integrals with a high actual dimension up to 16
are carried out. The multidimensional Weierstrass function, which has no derivative
at any point, is chosen as the integrand function. These calculations convincingly
show the advantages of the proposed methods.

Key words and phrases: multidimensional integral, Monte Carlo method, Sobol
points, multigrid calculation, a posteriori error estimates

1. Introduction

Integrals of multivariate functions occur in many areas of physics. Here
are some examples. The transfer of neutrons, photons and other particles in
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the medium is described by the equation for the distribution function; this
function depends on three coordinates of the medium and three components
of the particle velocity vector, that is, the number of variables is six. To
determine the coefficients of thermal conductivity or electrical conductivity
of a medium, it is necessary to calculate the collision integrals; they include
components of the velocity vectors before the moment of collision and after
the moment of collision. The total number of variables in such an integral is
twelve. Problems also arise with a significantly larger number of variables.
In the simplest formulation, the calculation of the integral in the unit 𝑝-

dimensional cube 𝑉 is considered. x = (𝑥1, 𝑥2, … , 𝑥𝑝) is 𝑝-dimensional vector.
Our aim is to calculate the following integral:

𝐼 ≡ ∫
𝑉

𝑓(𝑥)𝑑𝑥 =
1

∫
0

…
1

∫
0

𝑓(𝑥1, 𝑥2, … , 𝑥𝑝)𝑑𝑥1𝑑𝑥2 … 𝑑𝑥𝑝.

The accuracy of numerical grid methods drops rapidly with the increase of
dimension 𝑝. In order to obtain acceptable accuracy, more and more points
have to be taken, which makes the calculations exorbitantly laborious and
very time consuming. Due to this fact, the local Monte Carlo method is used
for high dimensions (𝑝 > 3). It involves the use of random numbers, which are
mathematical abstraction. In practice, however, one has to use sequences that
only imitate random numbers. Performance of the method strongly depends
on the choice of such a sequence.
Calculations of the representative test integrals show that to obtain good

accuracy the most important is the uniformity of the points’ distribution and
not its randomness. The most effective are Sobol sequences with the so-called
“magic” numbers of points 𝑁 = 2𝑛 , 𝑛 = 0, 1, ….
In this work, the following results are obtained. Firstly, shifted Sobol

points are proposed. It is a modification that improves uniformity of the
point distribution and increases the accuracy of cubatures. Secondly, a multi-
grid strategy that gives a posteriori estimate of the accuracy is constructed.
The advantages of the proposed algorithms are illustrated with representative
test examples.

2. Pseudorandom points

For the local Monte Carlo method, 𝑁 random points 𝑥𝑗 are selected in the

cube 𝑉; in this case, the number 𝑁 can be arbitrary, in contrast to cubature
formulae on regular grids. The cubature formula

𝐼𝑁 ≡ 1
𝑁

𝑁
∑
𝑗=1

𝑓(𝑥𝑗) (1)

is similar to the formula for mean Riemann sum. However, the estimate of
its error Δ𝑁 turns out to be radically different

Δ𝑁 ≡ 𝐼 − 𝐼𝑁 ∼ √𝐷𝑓𝑁−1/2, 𝐷𝑓 = ∫
𝑉

𝑓2(𝑥)𝑑𝑥 − ⎡⎢
⎣

∫
𝑉

𝑓(𝑥)𝑑𝑥⎤⎥
⎦

2

. (2)
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Here 𝐷𝑓 is variance. The estimate of the error is not majorant, but
probabilistic: magnitude of the error is distributed according to the Gaussian
law with the standard specified in the formula. The error does not exceed
the standard deviation with a probability of 0.68.
The error estimate (2) does not depend on the dimension 𝑝. Random points

are inferior in accuracy to regular grids at 𝑝 = 1 or 𝑝 = 2. Already at 𝑝 = 4,
the dependence of the error on 𝑁 for random points and regular grids is the
same. With further increase in dimension, random points turns out to be
more advantageous; advantage increases rapidly as dimension 𝑝 grows.
Formulae (2) assume that random points 𝑥𝑗 have uniform distribution

density in the cube 𝑉 and are not correlated. However, no rigorous mathe-
matical methods for constructing such points have been found. A number of
mathematical algorithms have been proposed; the resulting points are called
pseudorandom. An extensive literature is devoted to the construction of pseu-
dorandom points, for example, [1]–[13]. The following generators are most
common in the literature:

— Mersenne twister and SIMD-oriented fast Mersenne twister;
— Multiplicative congruential generator;
— 64-bit multiplicative lagged Fibonacci generator;
— combined multiple recursive generator;
— generator Philo4x32;
— generator Threefry4x64;
— Marsaglia’s SHR3 shift-register generator;
— modified Subtract-with-Borrow generator;
— modified Lehmer sequence.

These generators are implemented in many commercial packages (for ex-
ample, Matlab).
The quality of each sequence of pseudorandom numbers is checked using

some sets of tests based on the theory of probability [14]–[17]. But no set of
tests can be complete and comprehensive. Therefore, such checks are limited.
Even the simplest visual tests show that widespread sequences do not provide
a sufficiently good uniformity of filling the unit square [18], [19]. The question
of the influence of such unevenness on the actual error of cubatures remains
insufficiently clear.

3. Sobol points

To construct the Sobol sequence, a set of the so-called direction numbers
should be selected. There is some ambiguity in the selection of initial direction
numbers. In early works [1], direction number tables were constructed for

dimensions 𝑝 ⩽ 13 and numbers 𝑛 ⩽ 20 (total number of points 𝑁 ⩽ 220).
Later, direction numbers for higher 𝑝 and 𝑁 were constructed [20]. However,
the direction numbers were also changed. The program is currently available
at 21. The open access option contains 𝑝 ⩽ 50 and 𝑛 ⩽ 31 (𝑁 ≈ 2 ⋅ 109).
The commercial version of the program has 𝑝 ⩽ 216 − 1.
It is important to note that the Sobol sequences are constructed separately

for each 𝑝. It is impossible to obtain a sequence of fewer dimensions from
𝑝-dimensional Sobol sequence. This also applies to magic segments of the
Sobol sequences.
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The Sobol cubature formula has the same form as (2). But the estimate
of its error is not entirely clear. The distribution of points only for magic
𝑁 approaches uniform in properties. For intermediate 𝑁, it is obtained by
discarding some of the points and loses the property of uniformity. Therefore,
only magic 𝑁 should be used for cubatures.
Various attempts have been made to generalize the Sobol sequences. How-

ever, the search for optimal variants of such generalizations invariably led
again to the Sobol sequences. Therefore, such generalizations need to be
treated with caution.

4. Shifted Sobol points

The arrangement of the Sobol points is somewhat asymmetrical. For
example, if number of points 𝑁 = 2𝑛 is taken, then the arithmetic mean of all
points projections on any axis will not be 0.5, but 0.5 (1 − 1/𝑁). Obviously,
this asymmetry is not favourable for obtaining good cubature accuracy.
In the figure 1, black circles show two-dimensional Sobol points for the

first magic numbers. For 𝑛 = 0, the only point lies in the corner of the unit
square. Calculation of the cubature over this point gives a formula of the first
order accuracy. However, if this point is shifted by 0.5 along each coordinate,
then the cubature over the shifted point (light circle) has the second order of
accuracy. For the case 𝑛 = 1, two points are located one in the corner of the
square and one in the center, which will also give the first order of accuracy.
But if these two points are shifted by 0.25 along each coordinate, then the
cubature error obviously decreases. Therefore, a general shift principle for
any number of dimensions can be proposed:

If N = 2n, then add to all coordinates of all points (2N )−1
.

It is advisable to apply this shift only for magic Sobol numbers. In this
case, the shifts are different for different 𝑁.

5. Multigrid calculation

Test calculations show that the actual error decreases as 𝑂 (𝑁−1). This
suggests that it is possible to approximate the integral (and hence its error)
as a function of 𝑁. However, this approximation cannot be smooth, such as
Richardson’s interpolation approximation for grid methods. In this case, the
points are obtained by statistical methods, therefore, their processing must
be carried out using the root-mean-square approximation. To do this, the
type of approximation must be chosen and some weights to the points need
to be assigned.
As a working hypothesis, the law of decreasing error Δ𝑁 ∼ 𝑁−1 was as-

sumed. But since the nature of the error becomes clearly statistical with
increasing 𝑝, the standard deviation of these errors was assumed to be pro-
portional to 𝑁−1/2. This is the weight used for approximation.
The following multigrid procedure is proposed. The calculation with magic

𝑁 = 2𝑛, 𝑛 = 10, 11, … is performed. As a result, a sequence of values of the
integral {𝐼𝑁} is obtained. Now this sequence can be approximated by the
method of least squares

𝐼𝑁 ≈ 𝑎 + 𝑏𝑁−1. (3)
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Figure 1. Sobol magic points for 𝑝 = 2: points – unbiased, circles – shifted;
the 𝑛 values are indicated near the squares

Here 𝑎 is the refined value of the integral. At the same time, the stan-
dard deviation 𝜎𝑎 for the value 𝑎 is calculated. This standard deviation is
a statistical estimate of the accuracy for the found value of the integral.
Note that the beginning of the sequence {𝐼𝑁} corresponding to 𝑛 = 0, 1, … , 9

is not taken into account in approximation (3), since these grids are not
detailed enough, and the rate of decrease of the error does not yet correspond
to 𝑂 (𝑁−1).

6. Test integral

It is expedient to carry out numerical experiments on multidimensional
integrals over the unit cube, the exact values of which are known. Then
the error of the numerical calculation can be directly determined and its
behaviour can be studied. Further, requirements that are appropriate for the
integrand are discussed.
In multidimensional problems, the concept of the effective dimension of

a function is used. For example, consider two functions:

𝑓(x) =
𝑝

∏
𝑗=1

𝑓𝑗 (𝑥𝑗) (4)

and

𝑓(x) = 𝑓1 (
𝑝

∑
𝑗=1

𝛼𝑗𝑥𝑗) ,
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where all 𝑓𝑗(𝑥𝑗) are essentially different from constants. In the first function,

all variables are equally important, and the effective dimension of the function
is 𝑝. The second function depends on only one combination of variables, so
its effective dimension is 1. The higher the effective dimension of the function,
the more difficult the problem. Therefore, the most difficult functions are of
the first type.

Suppose that for a product function each 𝑓𝑗 differs substantially from

zero only on a segment of length 𝛽 of its unit edge. Then the product of
one-dimensional functions will differ significantly from zero in the volume
𝛽𝑝. If 𝛽 is small, then as 𝑝 increases, the volume 𝛽𝑝 decreases rapidly; for
example, for 𝛽 = 0.1 and 𝑝 = 10 the value 𝛽𝑝 = 10−10. In this case, to obtain
acceptable accuracy, any Monte Carlo method will require the number of
nodes 𝑁 ≫ 𝛽−𝑝. It can be seen that in order for the number of points to be
reasonable, 𝛽 should be taken close to one.

Taking these considerations into account, a test of the form (4) have been
chosen. It is not easy, despite its seeming simplicity. All 𝑓𝑗 are assumed to
be the same and equal to the Weierstrass functions

𝑓𝑗 (𝑥𝑗) =
∞

∑
𝑛=0

𝑏𝑛 cos (𝑎𝑛𝜋𝑥𝑗) , (5)

where 𝑎 is an arbitrary odd number that is not equal to one, and 𝑏 is a positive
number less than one. It is known that under the conditions 𝑎𝑏 ⩾ 1, 𝑎 > 1,
the Weierstrass function is continuous, but has no derivative at any point.
This test is extremely difficult. The Weierstrass function is shown in the
figure 2.

Figure 2. Weierstrass function with 𝑎 = 3, 𝑏 = 0.5
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Taking into account the symmetry of the Weierstrass function, the integra-
tion is carried out over a cube with sides 𝑥𝑗 ∈ [0, 0.5]. For convenience, the
Weierstrass function is normalized, the normalization condition is

∫
𝑉

𝑓(x)𝑑x = 1. (6)

7. Calculation results

The integral of the multidimensional Weierstrass function (4), (5) was
calculated using three qualitatively different approaches: regular cubature on
trapezoidal formulae, the classical Monte Carlo method using the Mersenne
twister and shifted Sobol magic points.
These three approaches are compared in terms of the error magnitude with

a fairly modest number of points 𝑁 = 220. The logarithms of the errors
depending on the dimension are shown in the figure 3. Let us analyze the
curves.

Figure 3. Logarithm of the relative error in calculating the integral of the Weierstrass

function for 𝑁 = 220: light triangle is Δ𝑁, circle is 𝜎𝑎 for the shifted Sobol points, black

inverted triangle corresponds to Mersenne twister, black square is for trapezoidal method

Mersenne twister. Beginning with dimension 𝑝 = 11, the curve corre-
sponding to the Mersenne twister lies below all. Despite the good accuracy,
there are no means to confirm it. An attempt to apply the root-mean-square
approximation (3) to the Mersenne twister was unsuccessful: the values of 𝜎𝑎
turn out to be either larger or smaller than the actual error depending on the
dimension 𝑝, and the difference can be significant.
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The standard deviation (𝐷𝑓/𝑁)1/2
can serve as an error estimate of the

Mersenne twister, but the calculation of the variance for some integrals can
be problematic. In addition, the performance of the Monte Carlo method is
highly dependent on the choice of a sequence that simulates random numbers,
so the standard and actual error can vary greatly.
In general, the value of lg |Δ𝑀𝐾| lies in the range from −3.5 to 0 and slowly

increases with increasing dimension 𝑝.
Trapezoidal formula. Its error is determined by the formula

|Δ𝑁| ⩽ 1
12𝑘2 max ∣

𝑑2𝑓𝑗

𝑑𝑥2 ∣ , (7)

where 𝑘 = 𝑁1/𝑝 is the number of nodes along each coordinate. Thus, its

error is 𝑂 (𝑁−2/𝑝); accuracy should decrease rapidly with increasing . The
corresponding curve (black square marker in Fig. 3) illustrates good accuracy
lg |Δ𝑀𝑇| ≈ −5.2 at 𝑝 = 2; this is much more accurate than the classical
Monte Carlo method. However, with increasing 𝑝, the error rapidly increases,
and already at 𝑝 ⩾ 4 it exceeds the error of the Monte Carlo method. At even
higher dimensions, the trapezoidal method quickly becomes uncompetitive.
Sobol sequence. Despite the fact that for high dimensions 𝑝 the Mersenne

twister shows the best result, the shifted Sobol points have a reasonable
estimate of the accuracy. It is the standard deviation 𝜎𝑎. Thus, even in
complex problems, the actual accuracy can be estimated a posteriori using 𝜎𝑎,
the number of points can be increased and the calculation can be repeated.
This is especially important for multidimensional integrals with an unknown
exact answer.

8. Conclusion

The magic Sobol points are the most effective for calculating multidimen-
sional integrals. In this paper, an improvement of these sequences is proposed.
They are called the shifted Sobol magic points, which provide a more uniform
distribution of points in a multidimensional cube. This significantly increases
the accuracy of cubatures.
A significant difficulty with Monte Carlo methods is the a posteriori con-

firmation of the actual accuracy. In this paper, a multigrid algorithm is
proposed that allows to find the grid value of the integral simultaneously with
a statistically reliable estimate of its accuracy. Previously, such estimates
were unknown.
Calculations of representative test integrals with high actual dimension 𝑝

(up to 𝑝 = 16) are carried out. Smooth integrands were considered, as well
as the multidimensional Weierstrass function having no derivative at any
point. These calculations convincingly show the advantages of the proposed
methods.
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Сдвинутые точки Соболя и многосеточный расчёт
методом Монте-Карло

А. А. Белов1, 2, М. А. Тинтул1

1Московский государственный университет им. М.В. Ломоносова
Ленинские горы, д. 1, стр. 2, Москва, 119991, Россия

2 Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Многомерные интегралы возникают во многих задачах физики. Например, мо-
менты функции распределения в задачах переноса различных частиц (фотонов,
нейтронов и др.) являются 6-мерными интегралами. При расчёте коэффициен-
тов электропроводности и теплопроводности возникают интегралы рассеяния,
размерность которых равна 12. Возникают задачи и с существенно большим
числом переменных. Для вычисления интегралов столь высокой кратности наи-
более эффективен метод Монте-Карло. Однако работоспособность этого метода
сильно зависит от выбора последовательности, имитирующей набор случайных
чисел. В литературе описано большое количество генераторов псевдослучайных
чисел. Их качество проверяется с помощью батарей формальных тестов. Однако
простейший визуальный анализ показывает, что прохождение таких тестов не
гарантирует хорошей равномерности этих последовательностей. Для вычисле-
ния многомерных интегралов наиболее эффективны магические точки Соболя.
В данной работе предложено усовершенствование этих последовательностей —
смещённые магические точки Соболя, обеспечивающие большую равномерность
распределения точек в многомерном кубе. Это ощутимо повышает точность ку-
батур. Существенной трудностью методов Монте-Карло является апостериорное
подтверждение фактической точности. В данной работе предложен многосеточ-
ный алгоритм, позволяющий найти сеточное значение интеграла одновременно
со статистически достоверной оценкой его точности. Ранее такие оценки были
неизвестны. Проведены расчёты представительных тестовых интегралов с высо-
кой фактической размерностью до 16. В качестве подынтегральной функции
выбрана многомерная функция Вейерштрасса, не имеющая производной ни в од-
ной точке. Эти расчёты убедительно показывают преимущества предложенных
методов.

Ключевые слова: многомерный интеграл, метод Монте-Карло, точки Соболя,
многосеточный расчет, апостериорные оценки точности


