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Magnetic Excitations of Graphene in 8-Spinor Realization
of Chiral Model
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The simplest scalar chiral model of graphene suggested earlier and based on the 𝑆𝑈(2) or-
der parameter is generalized by including 8-spinor field as an additional order parameter for the
description of spin (magnetic) excitations in graphene. As an illustration we study the interac-
tion of the graphene layer with the external magnetic field. In the case of the magnetic field
parallel to the graphene plane the diamagnetic effect is predicted, that is the weakening of the
magnetic intensity in the volume of the material. However, for the case of the magnetic field
orthogonal to the graphene plane the strengthening of the magnetic intensity is revealed in the
central domain (at small 𝑟). Thus, the magnetic properties of the graphene prove to be strongly
anisotropic.
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1. Introduction. Scalar Chiral Model

Since the very discovery of mono-atomic carbon layers called graphenes [1,2] this ma-
terial attracted deep interest of researchers due to its extraordinary properties concerning
magnetism, stiffness and high electric and thermal conductivity [3–5]. The interesting
connection of graphene was revealed with nano-tubes and fullerenes [6]. A very simple
explanation of these unusual properties of graphene was suggested in [7], where the idea
of massless Dirac-like excitations of honeycomb carbon lattice was discussed, the latter
one being considered as a superposition of two triangular sub-lattices. Some phenomeno-
logical development of this idea was realized in [8, 9].

As is well known, the carbon atom possesses of four valence electrons in the so-
called hybridized 𝑠𝑝2-states, the one of them being “free” in graphene lattice and all
others forming 𝑠𝑝-bonds with the neighbors. It appears natural to introduce scalar
𝑎0 and 3-vector a fields corresponding to the 𝑠-orbital and the 𝑝-orbital states of the
“free” electron respectively. These two fields can be combined into the unitary matrix
𝑈 ∈ 𝑆𝑈(2) considered as the order parameter of the model in question, the long-wave
approximation being adopted, i. e.

𝑈 = 𝑎0 𝜏0 + 𝚤a · 𝜏, (1)

where 𝜏0 is the unit 2 × 2-matrix and 𝜏 are the three Pauli matrices, with the 𝑆𝑈(2)-
condition

𝑎20 + a2 = 1 (2)

being imposed. It is convenient to construct via the differentiation of the chiral field (1)
the so-called left chiral current

𝑙𝜇 = 𝑈+𝜕𝜇𝑈, (3)
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the index 𝜇 running 0, 1, 2, 3 and denoting the derivatives with respect to the time 𝑥0 = 𝑐𝑡
and the space coordinates 𝑥𝑖, 𝑖 = 1, 2, 3. Then the simplest Lagrangian density reads

ℒ = −1

4
𝐼 Sp(𝑙𝜇𝑙

𝜇) − 1

2
𝜆2a2 (4)

and corresponds to the sigma-model approach in the field theory with the mass term.
Here the constant model parameters 𝐼 and 𝜆 are introduced. Comparing the Lagrangian
density (4) with that of the Landau–Lifshits theory corresponding to the quasiclassical
long-wave approximation to the Heisenberg magnetic model [10], one can interpret the
parameter 𝐼 in (4) as the exchange energy between the atoms (per spacing).

Inserting (1) into (3) and (4) and taking into account the condition (2), one easily
finds the following Lagrangian density:

ℒ =
1

2
𝐼 (𝜕𝜇𝑎0 𝜕

𝜇𝑎0 + 𝜕𝜇a · 𝜕𝜇a) − 1

2
𝜆2a2. (5)

For the case of small a-excitations the equations of motion generated by (5) read as

�a− (𝜆2/𝐼)a = 0

and correspond to the dispersion law

𝜔 = 𝑘0𝑐, 𝑘20 = k2 + 𝜆2/𝐼,

which in the high-frequency approximation has the linear photon-like form.
First we begin with the static 1𝐷 configuration corresponding to the ideal graphene

plane, the normal being oriented along the 𝑧-axis. In this case the order parameter has
the form

𝑈 = exp(𝚤Θ𝜏3), Θ = Θ(𝑧),

with the Lagrangian density being

ℒ = −𝐼
2

Θ′2 − 𝜆2

2
sin2Θ. (6)

The Lagrangian (6) yields the equation of motion

2𝐼Θ′′ − 𝜆2sin2Θ = 0. (7)

The solution to (7) satisfying the natural boundary conditions

Θ(−∞) = 𝜋, Θ(+∞) = 0

has the well-known kink-like (or domain-wall) form:

Θ0(𝑧) = 2 arctan exp(−𝑧/ℓ), (8)

with the characteristic thickness (length parameter)

ℓ =
√
𝐼/𝜆 (9)

and the energy per unit area

𝐸 =
1

2

∫︁
d𝑧
(︁
𝐼Θ′

0
2

+ 𝜆2sin2 Θ0

)︁
= 2𝜆

√
𝐼.
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2. Spinor Chiral Model of Graphene

Now we intend to include in the model the interaction with the electromagnetic field
for the description of conductivity and magnetic properties. To this end, we suggest
8-spinor generalization of the scalar chiral model and use the gauge invariance principle
for introducing the electromagnetic interaction. The motivation for such a generalization
is the following.

For the description of spin and quasi-spin excitations in graphene, the latter ones
corresponding to independent excitation modes of the two triangular sub-lattices of
graphene, we introduce the two Dirac spinors 𝜓1, 𝜓2 and consider the combined spinor
field Ψ as a new order parameter:

Ψ = 𝜉 ⊗ (𝜓1 ⊕ 𝜓2) , (10)

where 𝜉 stands for the first column of the unitary matrix (1). The Lagrangian density of
the model

ℒ =
𝐼

2
𝐷𝜇Ψ𝑃 𝐷𝜇Ψ +

𝜆2

2
a2𝑗𝜇𝑗

𝜇 + 𝚤𝜇0a
2Ψ𝜎𝜇𝜈𝐹

𝜇𝜈Ψ (11)

contains the projector 𝑃 = 𝛾𝜈𝑗𝜈 on the positive energy states, where 𝑗𝜇 = Ψ𝛾𝜇𝜓, 𝜇 =

0, 1, 2, 3, designates the Dirac current, Ψ = Ψ+𝛾0 and 𝛾𝜇 stands for the Dirac matrix. The
model contains the two constant parameters of the previous scalar model: the exchange
energy 𝐼 per lattice spacing and some characteristic inverse length

√
𝜆 . The interaction

with the electromagnetic field is realized through the extension of the derivative:

𝐷𝜇 = 𝜕𝜇 − 𝚤𝑒0𝐴𝜇Γ𝑒,

with 𝑒0 > 0 being the coupling constant and Γ𝑒 = (1 − 𝜏3)/2 being the charge opera-
tor chosen in accordance with the natural boundary condition at infinity: 𝑎0(∞) = 1.
However, the additional interaction term of the Pauli type should be added to take into
account the proper magnetic moments of the electrons. Here

𝜎𝜇𝜈 = [𝛾𝜇, 𝛾𝜈 ]/4, 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇,

and 𝜇0 > 0 denotes the Bohr magneton per lattice spacing cubed.

Let us consider as an illustration the interaction of the mono-atomic carbon layer
𝑧 = 0 with the static uniform magnetic field B0 oriented along the 𝑥 axis. We introduce
first the vector potential 𝐴𝑦 = 𝐴(𝑧), with the intensity of the magnetic field being

𝐵𝑥 = 𝐵(𝑧) = −𝐴′(𝑧)

and the natural boundary condition at infinity: 𝐴→ −𝐵0 𝑧.

The model in question admits the evident symmetry 𝜓1 ⇔ 𝜓2 , 𝛾0 — invariance
Ψ ⇒ 𝛾0Ψ and also the discrete symmetry:

𝜓𝑖 ⇔ 𝜓*
𝑖 ; 𝑎2,3 ⇒ −𝑎2,3.

Therefore, one can introduce the chiral angle Θ(𝑧):

𝑎0 = cos Θ, 𝑎1 = sin Θ

and the real 2-spinor 𝜙(𝑧) = col(𝑢,−𝑢), where 𝜓1 = 𝜓2 = col(𝜙,−𝜙). As a result the
new Lagrangian density takes the form:

ℒ = −2𝐼𝑈 ′2 − 8𝐼𝑈2(Θ′2 + 𝑒20𝐴
2 sin2 Θ) − 4𝑈 sin2 Θ(2𝜆2𝑈 + 𝜇0𝐴

′) −𝐴′2/(8𝜋), (12)
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where the new variable is introduced: 𝑈 = |𝜙|2 = 2𝑢2. Taking into account that 𝑗2 =
16𝑈2, one can deduce from (12) and the boundary conditions at infinity:

𝑗2(∞) = 1, Θ(∞) = 0, 𝐴′(∞) = −𝐵0

the following “energy” integral:

𝐸 = −2𝐼𝑈 ′2 − 8𝐼𝑈2(Θ′2 − 𝑒20𝐴
2 sin2 Θ) + 8𝜆2𝑈2 sin2 Θ −𝐴′2/(8𝜋) = −𝐵2

0/(8𝜋),

that implies the Hamilton–Jacobi equation for the “action” 𝑆:

1

8𝐼

(︂
𝜕𝑆

𝜕𝑈

)︂2

+
1

32 𝐼 𝑈2

(︂
𝜕𝑆

𝜕Θ

)︂2

+ 2𝜋

(︂
𝜕𝑆

𝜕𝐴
+ 4𝜇0𝑈 sin2 Θ

)︂2

=

=
𝐵2

0

8𝜋
+ 8𝑈2 sin2 Θ

(︀
𝜆2 + 𝐼 𝑒20𝐴

2
)︀
. (13)

Here the following definitions of the Jacobi momentums are used:

𝜕𝑆

𝜕𝑈
= −4 𝐼 𝑈 ′;

𝜕𝑆

𝜕Θ
= −16 𝐼 𝑈2Θ′2;

𝜕𝑆

𝜕𝐴
= −4𝜇0𝑈 sin2 Θ −−𝐴′/(4𝜋). (14)

Let us study the behavior of solution to the equations (13) and (14) in the asymptotic
domain 𝑧 → ∞, where 𝐴 ≈ −𝐵0𝑧. In the first approximation one gets:

𝑆 ≈
(︂
𝐵0

4𝜋
− 8 𝑒0𝐼 𝑈

2 sin2 Θ

)︂
𝐴. (15)

Inserting (15) into (14), one derives the differential equation

𝑈 ′ = 4𝑈Θ′ tan Θ

with the evident integral 4𝑈 = cos−4 Θ corresponding to the boundary condition 𝑈(∞) =
1/4. In view of (14) this fact permits one to obtain the equation for Θ(𝑧):

2Θ′

sin 2Θ
= 𝑒0𝐴 ≈ −𝑒0𝐵0𝑧

with the solution of the form:

tan Θ = tan Θ0 exp
(︀
−𝑒0𝐵0𝑧

2/2
)︀
, (16)

where Θ0 stands for the integration constant. Finally, combining (16) and the last relation
in (14), one can find the magnetic field intensity in the asymptotic domain 𝑧 → ∞:

𝐵 = −𝐴′ ≈ 𝐵0 − 2𝜋(𝑒0𝐼 − 2𝜇0) tan2 Θ0 exp
(︀
−𝑒0𝐵0𝑧

2
)︀
. (17)

As can be seen from (17), the effect of weakening of the magnetic field is revealed for
the positive value of the constant 𝑒0𝐼 − 2𝜇0 , this effect being similar to that of London
“screening” caused by the second term in the electromagnetic current:

𝐽𝜇 = 𝑒0𝐼Im
(︀
Ψ𝑃Γ𝑒𝜕𝜇Ψ

)︀
− 𝑒20𝐼𝑗

2(𝑎21 + 𝑎22)𝐴𝜇 + 2𝚤𝜇0𝜕
𝜈
(︀
a2Ψ𝜎𝜇𝜈Ψ

)︀
. (18)

The current (18) contains beyond the standard conduction term, the diamagnetic
current and the Pauli magnetization-polarization one. As follows from (17), for the
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negative value of the constant 𝑒0𝐼−2𝜇0 the paramagnetic behavior of the material takes
place.

3. Interaction with Magnetic Field Orthogonal to Graphene
Plane

Let us now study the case with the orientation of the magnetic field B0 along the 𝑧-
axis. Using the cylindrical coordinates 𝑟, 𝜑, 𝑧, we introduce the vector potential 𝐴𝜑 = 𝐴,
with the intensity of the magnetic field being

𝐵𝑧 = 𝜕𝑟(𝑟 𝐴)/𝑟, 𝐵𝑟 = −𝜕𝑧𝐴,

and the natural boundary condition at infinity being imposed: 𝐴(𝑧 → ∞) = 𝐵0𝑟/2.
The model in question admits the evident symmetry 𝜓1 ⇔ 𝜓2 and 𝛾0 — invariance

Ψ ⇒ 𝛾0Ψ, that permits one to introduce 2-spinor 𝜙 by putting

𝜓1 = 𝜓2 = col(𝜙,𝜙), 𝜙 = col(𝑤, 𝑢).

To simplify the calculations, let us suppose the smallness of the radial magnetic field:

𝐵𝑟 ≪ 𝐵𝑧.

In this approximation the new discrete symmetry holds:

𝜙⇒ −𝜎3𝜙, 𝑤 ⇒ −𝑤, 𝑢⇒ 𝑢*, 𝑎2,3 ⇒ −𝑎2,3,

that permits one to introduce the chiral angle Θ:

𝑎0 = cos Θ, 𝑎1 = sin Θ

and consider the axially-symmetric configuration:

𝑢 = 𝑢(𝑟, 𝑧), Θ = Θ(𝑟, 𝑧).

As a result the new Lagrangian density takes the form:

ℒ = −8 𝐼

[︂
𝑅2(𝜕⊥Θ)2 +

1

4
(𝜕⊥𝑅)2 + 𝑒20𝑅

2𝐴2 sin2 Θ

]︂
− 8𝜆2𝑅2 sin2 Θ +

+ 8𝜇0𝑅 sin2 Θ
1

𝑟
𝜕𝑟(𝑟 𝐴) − 1

8𝜋

[︂
1

𝑟2
(︀
𝜕𝑟(𝑟 𝐴)

)︀2
+ (𝜕𝑧𝐴)2

]︂
, (19)

where the new variable is introduced: 𝑅 = 𝑢2 and 𝜕⊥ signifies the differentiation with
respect to 𝑟 and 𝑧. The equations of motion corresponding to (19) read:

𝐼

[︂
1

𝑟
𝜕𝑟(𝑟𝜕𝑟𝑅) + 𝜕2𝑧𝑅− 4𝑅(𝜕⊥Θ)2 − 4 𝑒20𝑅𝐴

2 sin2 Θ

]︂
=

= 2 sin2 Θ

[︂
2𝜆2𝑅− 𝜇0

1

𝑟
𝜕𝑟(𝑟 𝐴)

]︂
, (20)

𝐼

[︂
2

𝑟
𝜕𝑟(𝑟 𝑅

2𝜕𝑟Θ) + 2𝜕𝑧(𝑅
2𝜕𝑧Θ) − 𝑒20𝑅

2𝐴2 sin 2Θ

]︂
=
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= 𝑅 sin 2Θ

[︂
𝜆2𝑅− 𝜇0

1

𝑟
𝜕𝑟(𝑟 𝐴)

]︂
, (21)

1

4𝜋

[︂
1

𝑟
𝜕𝑟(𝑟𝜕𝑟𝐴) + 𝜕2𝑧𝐴− 𝐴

𝑟2

]︂
= 16 𝐼 𝑒20𝑅

2𝐴 sin2 Θ + 8𝜇0𝜕𝑟(𝑅 sin2 Θ). (22)

Let us now search for solutions to the equations (20), (21), (22) in the asymptotic
domain 𝑧 → ∞, where

Θ → 0; 𝑅 = 1/4 + 𝜁, 𝜁 → 0; 𝐴 = 𝐵0𝑟/2 + 𝛼, 𝛼→ 0.

Thus, the equation (21) takes the form:

𝐼

[︂
1

𝑟
𝜕𝑟(𝑟𝜕𝑟Θ) + 𝜕2𝑧Θ − 1

4
𝑒20𝐵

2
0𝑟

2Θ

]︂
= Θ(𝜆2 − 4𝜇𝑜𝐵0),

and its solution can be found by separating variables:

Θ = Θ0 exp
(︀
−𝜈𝑟2 − 𝜅𝑧

)︀
, Θ0 = const, (23)

with the following constant parameters:

𝜈 = 𝑒0𝐵0/4; 𝐼𝜅2 = 𝐵0(𝑒0𝐼 − 4𝜇0) + 𝜆2. (24)

Inserting (23) into (20) and (22), one gets the inhomogeneous equations for 𝜁 and 𝛼:

1

𝑟
𝜕𝑟(𝑟𝜕𝑟𝜁) + 𝜕2𝑧𝜁 = (𝜕⊥)2 +

[︂
1

4
𝑒20𝐵

2
0𝑟

2 +
1

𝐼
(𝜆2 − 2𝜇0𝐵0)

]︂
Θ2, (25)

1

𝑟
𝜕𝑟(𝑟𝜕𝑟𝛼) + 𝜕2𝑧𝛼− 𝛼

𝑟2
= 2𝜋𝑒0𝐵0(𝑒0𝐼 − 4𝜇0)𝑟Θ2 ≡ 𝛿𝑟Θ2 (26)

with the solutions of the form:

𝜁 = Θ2
0 exp

(︀
−2𝜈𝑟2 − 2𝜅𝑧

)︀
𝑁(𝑟); 𝛼 = 𝛿Θ2

0 exp
(︀
−2𝜈𝑟2 − 2𝜅𝑧

)︀
𝐾(𝑟), (27)

where the radial functions 𝑁(𝑟) and 𝐾(𝑟) satisfy the following equations:

𝑁 ′′ +𝑁 ′
(︂

1

𝑟
− 8𝜈𝑟

)︂
+𝑁

[︂
2𝐵0

(︁
𝑒0 − 8

𝜇0

𝐼

)︁
+ 4

𝜆2

𝐼
+ 𝑒20𝐵

2
0𝑟

2

]︂
=

=
1

2
𝑒20𝐵

2
0𝑟

2 + 𝑒0𝐵0 +
2

𝐼
(𝜆2 − 3𝜇0𝐵0), (28)

𝐾 ′′ +𝐾 ′
(︂

1

𝑟
− 8𝜈𝑟

)︂
+𝐾

(︂
4𝜅2 − 8𝜈 + 16𝜈2𝑟2 − 1

𝑟2

)︂
= 𝑟. (29)

Let us now estimate the magnetic intensity:

𝐵𝑧 = 𝐵0 + 𝑏𝑧, 𝑏𝑧 =
1

𝑟
𝜕𝑟(𝑟𝛼), 𝐵𝑟 = 𝑏𝑟 = −𝜕𝑧𝛼.

Taking into account that due to (29) 𝐾 ≈ (𝑒20𝐵
2
0𝑟)

−1 as 𝑟 → ∞, one gets from (27):

𝑏𝑧 = −2𝜋(𝑒0𝐼 − 4𝜇0)Θ2
0 exp

(︀
−2𝜈𝑟2 − 2𝜅𝑧

)︀
, (30)
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𝑏𝑟 =
4𝜋𝜅

𝑒0𝐵0𝑟
(𝑒0𝐼 − 4𝜇0)Θ2

0 exp
(︀
−2𝜈𝑟2 − 2𝜅𝑧

)︀
, (31)

However, at small 𝑟 → 0 one finds from (29) that 𝐾 ≈ 𝑟3/8, and therefore the
intensity of the magnetic field reads:

𝑏𝑧 = 𝜋𝑒0𝐵0(𝑒0𝐼 − 4𝜇0)Θ2
0𝑟

2 exp
(︀
−2𝜈𝑟2 − 2𝜅𝑧

)︀
, (32)

𝑏𝑟 =
𝜋𝜅

2
𝑒0𝐵0(𝑒0𝐼 − 4𝜇0)Θ2

0𝑟
3 exp

(︀
−2𝜈𝑟2 − 2𝜅𝑧

)︀
. (33)

As can be seen from (30)–(33) , according to the sign of the multiplier 𝑒0𝐼 − 4𝜇0 our
graphene material reveals diamagnetic or paramagnetic behavior. Therefore, it would be
interesting to obtain numerical estimates for the parameters of the model. In view of
definitions adopted one has

𝑒0 =
𝑒

~𝑐
, 𝜇0 =

𝑒~
2𝑚𝑒𝑐 𝑎3

, 𝐼 =
𝐸exch

𝑎
,

where the exchange energy is usually adopted as 𝐸exch = 2.9 eV and the lattice spacing
as 𝑎 = 3.56 · 10−8 cm, with 𝑒 being the absolute value of the electron charge. Finally,
one can find the following numerical values:

𝑒0𝐼 = 2 · 103 Gauss, 𝜇0 = 2 · 102 Gauss.

It means that the parameter 𝑒0𝐼 − 4𝜇0 is positive and the weakening of the magnetic
field inside the graphene is predicted in accordance with (17), (30) and (31) for large 𝑟
and its strengthening for small 𝑟 in accordance with (32) and (33).

In view of the importance of the latter conclusion it would be desirable to investigate
the magnetic field behavior in the central domain of the graphene material, i. e. at small
𝑟 but arbitrary 𝑧. To this end, we consider the extrapolation of the configuration (23)
to the domain wall structure of the form:

Θ = 2 arctan
[︀
exp
(︀
−2𝜈𝑟2 − 2𝜅𝑧

)︀]︀
. (34)

Later it will be shown that this approximation is valid in the small field limit 𝐵0 → 0.
To start with, we insert (34) and 𝐴 = 𝐵0𝑟/2 + 𝛼, 𝑅 ≈ 1/4 into (23), this amounting to
the equation:

1

𝑟
𝜕𝑟(𝑟𝜕𝑟𝛼) + 𝜕2𝑧𝛼− 𝛼

𝑟2
= 2𝜋𝑟 𝑒0𝐵0 sin2 Θ[𝑒0𝐼 − 4𝜇0 tanh

(︀
𝜈𝑟2 + 𝜅𝑧

)︀
] ≡ 2𝜋𝑟 𝑗. (35)

Solution to the equation (35) satisfying boundary condition 𝛼(𝑟 = 0) = 0 can be
found by Green’s function method:

𝛼 =

∞∫︁
−∞

d𝑧′
∞∫︁

−∞

d𝑠 exp[𝚤𝑠(𝑧 − 𝑧′)]

𝑟∫︁
0

d𝑟′ 𝑟′ 𝑗′ [𝐼1(𝑠 𝑟)𝐾1(𝑠 𝑟′) −𝐾1(𝑠 𝑟)𝐼1(𝑠 𝑟′)] , (36)

where 𝐼1 and 𝐾1 stand for the modified Bessel functions of the imaginary argument.
Taking into account their asymptotic behavior as 𝑥→ 0:

𝐼1(𝑥) ≈ 𝑥/2, 𝐾1(𝑥) ≈ 𝑥−1,
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one finds from (35) and (36) that at small 𝑟:

𝛼(𝑟, 𝑧) ≈ 𝜋𝑟3𝑒0𝐵0

4 cosh2(𝜈𝑟2 + 𝜅𝑧)

[︀
𝑒0𝐼 − 4𝜇0 tanh

(︀
𝜈𝑟2 + 𝜅𝑧

)︀]︀
, (37)

that confirms the paramagnetic behavior of the graphene in the central domain.
Finally, inserting (37) and 𝑅 = 1/4 + 𝜁, 𝐴 ≈ 𝐵0𝑟/2 into (20), one gets the equation:

1

𝑟
𝜕𝑟(𝑟𝜕𝑟𝜁) + 𝜕2𝑧𝜁 = sin2 Θ

[︂
2

𝐼
(𝜆2 − 3𝜇0𝐵0) + 𝑒0𝐵0

(︂
1 +

1

2
𝑒0𝐵0𝑟

2

)︂]︂
≡ 𝑗1. (38)

Solution to (38) can be found also by Green’s function method along similar lines as
for (35):

𝜁 =
1

2𝜋

∞∫︁
−∞

d𝑧′
∞∫︁

−∞

d𝑠 exp[𝚤𝑠(𝑧 − 𝑧′)]

𝑟∫︁
0

d𝑟′ 𝑟′ 𝑗′1 [𝐾0(𝑠 𝑟)𝐼0(𝑠 𝑟′) − 𝐼0(𝑠 𝑟)𝐾0(𝑠 𝑟′)] . (39)

Taking into account the asymptotic behavior of the Bessel functions as 𝑥→ 0:

𝐼0(𝑥) ≈ 1 + 𝑥, 𝐾0(𝑥) ≈ log[2/𝑥],

one finds from (38) and (39) that in the central domain

𝜁(𝑟, 𝑧) ≈ − 𝑟2

4 cosh2(𝜈𝑟2 + 𝜅𝑧)

[︂
2

𝐼
(𝜆2 − 3𝜇0𝐵0) + 𝑒0𝐵0

(︂
1 +

1

2
𝑒0𝐵0𝑟

2

)︂]︂
. (40)

Using (40), one can verify the validity of the approximation (34) as solution to (21)
for the central domain in the small field limit, that is if the following strong inequalities
hold:

𝜆2/𝐼 ≫ 𝑒0𝐵0, 𝑒0𝐵0𝑟
2 ≪ 1, 𝜅2𝑟2 ≪ 1.

4. Conclusions

We analyzed the two phenomenological approches to the description of the graphene:
the simplest scalar chiral model and its 8-spinor generalization. The scalar model admits
very simple domain-wall solution describing one layer graphene configuration. On the
opposite, the 8-spinor chiral model contains all previous results of the scalar model
and also permits one to describe graphene interaction with the electromagnetic field.
Magnetic excitations in graphene, for the case of the external magnetic field parallel to
the graphene plane, reveal the evident diamagnetic effect: the weakening of the magnetic
field within the graphene sample. As for the case of the magnetic field orthogonal to the
graphene plane, the strengthening of the magnetic intensity inside the material is revealed
in the central domain (at small 𝑟).

References

1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,
I. V. Grigorieva, A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films,
Science 306 (2004) 666–669.

2. A. K. Geim, Graphene: Status and Prospects, Science 324 (2009) 1530–1534.
3. C. Lee, X. Wei, J. W. Kysar, J. Hone, Measurement of Elastic Properties and Intrinsic

Strength of Monolayer Graphene, Science 321 (2008) 385–388.



274 RUDN Journal of MIPh. Vol. 25, No 3, 2017. Pp. 266–275

4. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau,
Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett. (8) (2008)
902–907.

5. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L.
Stormer, Ultrahigh Electron Mobility in Suspended Graphene, Solid State Commun.
146 (2008) 351–355.

6. D. Yu, L. Dai, Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Super-
Capacitors, J. Phys. Chem. Lett. 1 (2010) 467–470.

7. G. W. Semenoff, Condensed-Matter Simulation of a Three-Dimensional Anomaly,
Phys. Rev. Lett. 53 (1984) 2449–2452.

8. Yu. P. Rybakov, On Chiral Model of Graphene, Solid State Phenomena 190 (2012)
59–62.

9. Yu. P. Rybakov, Spin Excitations in Chiral Model of Graphene, Solid State Phenom-
ena 233–234 (2015) 16–19.

10. A. M. Kosevich, B. A. Ivanov, A. S. Kovalev, Nonlinear Magnetization Waves. Dy-
namical and Topological Solitons, Naukova Dumka, Kiev, 1983, in Russian.

УДК 538.9
DOI: 10.22363/2312-9735-2017-25-3-266-275

Магнитные возбуждения графена в рамках 8-спинорной
реализации киральной модели

Ю. П. Рыбаков, М. Искандар, А. Б. Ахмед

Кафедра теоретической физики и механики
Российский университет дружбы народов

ул. Миклухо-Маклая, д. 6, Москва, Россия, 117198

Простейшая киральная модель графена, предложенная ранее и основанная на 𝑆𝑈(2)
параметре порядка, обобщается путем введения 8-спинорного поля как дополнительного
параметра порядка для описания спиновых (магнитных) возбуждений в графене. В каче-
стве иллюстрации мы изучаем взаимодействие графенового слоя с внешним магнитным
полем. В случае магнитного поля, параллельного графеновой плоскости, предсказывает-
ся диамагнитный эффект, т. е. ослабление магнитной индукции внутри образца. Однако
в случае магнитного поля, ортогонального графеновой плоскости, обнаруживается усиле-
ние магнитной индукции в центральной области (при малых 𝑟). Таким образом, магнитные
свойства графена оказываются сильно анизотропными.

Ключевые слова: графен, спиновые возбуждения, киральная модель, 8-спинор
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