Pusmka

UDC 538.9
DOLI: 10.22363/2312-9735-2017-25-3-266-275

Magnetic Excitations of Graphene in 8-Spinor Realization

of Chiral Model
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The simplest scalar chiral model of graphene suggested earlier and based on the SU(2) or-
der parameter is generalized by including 8-spinor field as an additional order parameter for the
description of spin (magnetic) excitations in graphene. As an illustration we study the interac-
tion of the graphene layer with the external magnetic field. In the case of the magnetic field
parallel to the graphene plane the diamagnetic effect is predicted, that is the weakening of the
magnetic intensity in the volume of the material. However, for the case of the magnetic field
orthogonal to the graphene plane the strengthening of the magnetic intensity is revealed in the
central domain (at small 7). Thus, the magnetic properties of the graphene prove to be strongly
anisotropic.
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1. Introduction. Scalar Chiral Model

Since the very discovery of mono-atomic carbon layers called graphenes [1,2] this ma-
terial attracted deep interest of researchers due to its extraordinary properties concerning
magnetism, stiffness and high electric and thermal conductivity [3-5]. The interesting
connection of graphene was revealed with nano-tubes and fullerenes [6]. A very simple
explanation of these unusual properties of graphene was suggested in [7], where the idea
of massless Dirac-like excitations of honeycomb carbon lattice was discussed, the latter
one being considered as a superposition of two triangular sub-lattices. Some phenomeno-
logical development of this idea was realized in [8,9].

As is well known, the carbon atom possesses of four valence electrons in the so-
called hybridized sp>-states, the one of them being “free” in graphene lattice and all
others forming sp-bonds with the neighbors. It appears natural to introduce scalar
ap and 3-vector a fields corresponding to the s-orbital and the p-orbital states of the
“free” electron respectively. These two fields can be combined into the unitary matrix
U € SU(2) considered as the order parameter of the model in question, the long-wave
approximation being adopted, i.e.

U=agm+ra-, (1)

where 7y is the unit 2 x 2-matrix and 7 are the three Pauli matrices, with the SU(2)-
condition
ai+a%=1 (2)

being imposed. It is convenient to construct via the differentiation of the chiral field (1)

the so-called left chiral current
l,=U%9,U, (3)

Received 12t January, 2017.



Rybakov Yu.P., Iskandar M., Ahmed A.B. Magnetic Excitations of Graphene. .. 267

the index p running 0, 1,2, 3 and denoting the derivatives with respect to the time 20 = ct
and the space coordinates z*, i = 1,2,3. Then the simplest Lagrangian density reads

L= —i[ Sp(l,1") — %)\QaZ (4)

and corresponds to the sigma-model approach in the field theory with the mass term.
Here the constant model parameters I and A are introduced. Comparing the Lagrangian
density (4) with that of the Landau-Lifshits theory corresponding to the quasiclassical
long-wave approximation to the Heisenberg magnetic model [10], one can interpret the
parameter I in (4) as the exchange energy between the atoms (per spacing).

Inserting (1) into (3) and (4) and taking into account the condition (2), one easily
finds the following Lagrangian density:

L= %I (Opao 0"ag + 0ya - 0"a) — %/\2a2. (5)

For the case of small a-excitations the equations of motion generated by (5) read as
Oa— (\*/Ia=0
and correspond to the dispersion law
w=koc, kI=X>+\/I,

which in the high-frequency approximation has the linear photon-like form.

First we begin with the static 1D configuration corresponding to the ideal graphene
plane, the normal being oriented along the z-axis. In this case the order parameter has
the form

U=-exp(1O713), O =0(2),
with the Lagrangian density being

I 2
L= —59’2 - %sinQG. (6)

The Lagrangian (6) yields the equation of motion
210" — \?sin20 = 0. (7)
The solution to (7) satisfying the natural boundary conditions
O(—o0) =7, ©O(+00)=0
has the well-known kink-like (or domain-wall) form:
©¢(z) = 2arctanexp(—z/{), (8)
with the characteristic thickness (length parameter)
(=VI/\ (9)

and the energy per unit area

1
B= / dz (1@52 + A%sin? @0) — 2T,
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2. Spinor Chiral Model of Graphene

Now we intend to include in the model the interaction with the electromagnetic field
for the description of conductivity and magnetic properties. To this end, we suggest
8-spinor generalization of the scalar chiral model and use the gauge invariance principle
for introducing the electromagnetic interaction. The motivation for such a generalization
is the following.

For the description of spin and quasi-spin excitations in graphene, the latter ones
corresponding to independent excitation modes of the two triangular sub-lattices of
graphene, we introduce the two Dirac spinors 11, ¥ and consider the combined spinor
field ¥ as a new order parameter:

U =£® (1 @), (10)

where £ stands for the first column of the unitary matrix (1). The Lagrangian density of

the model ,

I— A _
L= 5D, WP D" + ?a2juj“ + 10a* Vo, FH (11)

contains the projector P = ~”j, on the positive energy states, where j, = Uy,1, p =

0,1,2,3, designates the Dirac current, ¥ = W¥vq and v, stands for the Dirac matrix. The
model contains the two constant parameters of the previous scalar model: the exchange

energy I per lattice spacing and some characteristic inverse length v/X . The interaction
with the electromagnetic field is realized through the extension of the derivative:

D, =0, —1e0A,l,,

with eg > 0 being the coupling constant and I'. = (1 — 73)/2 being the charge opera-
tor chosen in accordance with the natural boundary condition at infinity: ag(oc) = 1.
However, the additional interaction term of the Pauli type should be added to take into
account the proper magnetic moments of the electrons. Here

Opv = [7,&’ '71/]/47 F,ul/ = apAu - auA;“

and po > 0 denotes the Bohr magneton per lattice spacing cubed.

Let us consider as an illustration the interaction of the mono-atomic carbon layer
z = 0 with the static uniform magnetic field Bg oriented along the x axis. We introduce
first the vector potential A, = A(z), with the intensity of the magnetic field being

B, = B(z) = —A'(2)

and the natural boundary condition at infinity: A — — By z.

The model in question admits the evident symmetry 11 < 99 , 79 — invariance
U = ~y¥ and also the discrete symmetry:

Vi &Y azz = —asgs.
Therefore, one can introduce the chiral angle O(z):
ag =cosO, a3 =sin®

and the real 2-spinor ¢(z) = col(u, —u), where 1); = 1y = col(p, —¢). As a result the
new Lagrangian density takes the form:

L= —-2IU"7 —8IU*(0"7 4 2 A%sin? ©) — 4U sin® ©O(2A°U + pgA’) — A% /(87), (12)
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where the new variable is introduced: U = |¢|? = 2u®. Taking into account that j? =
16U2, one can deduce from (12) and the boundary conditions at infinity:

j%(00) =1, O(c0) =0, A'(cc)=—By
the following “energy” integral:
E = —2IU"? - 8IU%*(©"? — ¢2A?sin* ©) + 8)\*U?sin* © — A"?/(87) = —B2/(87),

that implies the Hamilton—Jacobi equation for the “action” S:

1 /85\° 1 a5\” as o\
8](8(]) +732]U2 <a®> + 27 <8A+4M()USIH @) =
2
= % +8U%sin? © (A\* + T efA?). (13)
Y

Here the following definitions of the Jacobi momentums are used:

%_7 /. @_7 202, %_7 2 A
3 41U 50 = 16 1U-©"; 94— 4poU sin” © A'/(4m). (14)

Let us study the behavior of solution to the equations (13) and (14) in the asymptotic
domain z — oo, where A &~ —Byz. In the first approximation one gets:

B
S~ (40 — 8¢l U?sin? @> A (15)

7r
Inserting (15) into (14), one derives the differential equation
U'=4U60 tan©

with the evident integral 4 U = cos™* © corresponding to the boundary condition U(co) =
1/4. In view of (14) this fact permits one to obtain the equation for O(z):

20’
=epA~ —eyB
sin 20 €0 €00
with the solution of the form:
tan © = tan ©g exp (—eoBoz2/2) , (16)

where O stands for the integration constant. Finally, combining (16) and the last relation
in (14), one can find the magnetic field intensity in the asymptotic domain z — oo:

B = —A"~ By — 2n(eol — 2u0) tan® O exp (—60302’2) . (17)

As can be seen from (17), the effect of weakening of the magnetic field is revealed for

the positive value of the constant egl — 2u¢ , this effect being similar to that of London
“screening” caused by the second term in the electromagnetic current:

Ju = eolIm (WPT.0, %) — ef15°(af + a3) A, + 2u100” (a°To,,, V) . (18)

The current (18) contains beyond the standard conduction term, the diamagnetic
current and the Pauli magnetization-polarization one. As follows from (17), for the
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negative value of the constant eql — 2ug the paramagnetic behavior of the material takes
place.

3. Interaction with Magnetic Field Orthogonal to Graphene
Plane

Let us now study the case with the orientation of the magnetic field By along the z-
axis. Using the cylindrical coordinates 7, ¢, z, we introduce the vector potential Ay = A,
with the intensity of the magnetic field being

B, =0.(rA)/r, B,=-0,A,

and the natural boundary condition at infinity being imposed: A(z — co) = Byr/2.

The model in question admits the evident symmetry ¥ < ¥y and 9 — invariance
U = vV, that permits one to introduce 2-spinor ¢ by putting

Y1 =1y = col(p, ¢), ¢ = col(w,u).
To simplify the calculations, let us suppose the smallness of the radial magnetic field:
B, < B,.
In this approximation the new discrete symmetry holds:
= —0o3p, w=-w, u=u", az3= —a3,
that permits one to introduce the chiral angle ©:
ag =cos®, a; =sin®
and consider the axially-symmetric configuration:
u=u(r,z), O =0(rz).
As a result the new Lagrangian density takes the form:
L=-81 [R2(8L®)2 + %(GLR)Q + 2 R% A? sin® @] — 8\?R?sin” © +
+ 8 po R sin? @l&(r A) — L [12 (0 (r A))2 + (8ZA)2] , (19)
T 8T |r

where the new variable is introduced: R = u? and 0, signifies the differentiation with
respect to 7 and z. The equations of motion corresponding to (19) read:

I [i@T(r(?TR) +9?R — 4 R(0,0)% — 4€2R A? sin® @] =

= 2sin? @ [2)\2]% - M0%8T(T A)] , (20)

2
I [Tar(r R%0,0) +20,(R%*0.0) — ¢2R*A? sin 2@] =
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= Rsin 20 )\QR—,U,()%&,«(’I“A) , (21)

1 [1 A
- ;&(r@TA) + 024 — = | =161 e2R*Asin® © + 8100, (Rsin? ©). (22)

r2

Let us now search for solutions to the equations (20), (21), (22) in the asymptotic
domain z — oo, where

©—0;, R=1/4+(, ¢(—0;, A=DByr/2+a, a—0.

Thus, the equation (21) takes the form:
1 2 L oo o 2
I ;87«(7’&@) + 070 — ZeOBOr O| = O(A* —4u,By),

and its solution can be found by separating variables:
© = Qg exp(—vr® — kz), ©g = const, (23)
with the following constant parameters:
v =reoBo/4; Ir*= By(eol — 4p0) + 2. (24)

Inserting (23) into (20) and (22), one gets the inhomogeneous equations for ¢ and a:

1 1 1

—0n(r0:C) + 92 =(0.)° + Ze333r2 = T(V — 2u9By)| 07, (25)
1
;&(7‘87«05) + 0% — % = 2meqBo(eol — 4410)r0? = 6102 (26)

with the solutions of the form:
¢ =0Fexp(—2vr® — 2k2)N(r); a=00Fexp(—2vr® — 2k2z)K(r), (27)
where the radial functions N(r) and K(r) satisfy the following equations:
N" + N’ (i - 8yr> +N {2 Bo (eo - 8%) + 4A1_2 + 633372} -
L oo o 212
= 56030’1“ + egBo + f()‘ —3uopBo), (28)

K"+ K’ (i - 8W> +K (452 — 8v + 1602 — 7}2> =r. (29)
Let us now estimate the magnetic intensity:
B,=By+b,, b,= %&(Toz), B, =b, = —0,q.
Taking into account that due to (29) K ~ (e2B3r)~! as r — oo, one gets from (27):

b, = —2m(eol — 4410)OF exp(—2vr® — 2kz), (30)
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4
b, = i (eol — 4410)OF exp(—2vr? — 2kz), (31)
60307“

However, at small » — 0 one finds from (29) that K ~ r3/8, and therefore the
intensity of the magnetic field reads:

b, = megBo(eol — 4M0)@0r exp( 2ur? — 2/1,2), (32)
b, = —eoBO(eOI 4110)O373 exp( 2ur? — 2/£z). (33)

As can be seen from (30)—(33) , according to the sign of the multiplier egl — 4o our
graphene material reveals diamagnetic or paramagnetic behavior. Therefore, it would be
interesting to obtain numerical estimates for the parameters of the model. In view of
definitions adopted one has

(& eh Eexch

e =—, o= —= = =
he’ 2mecad’ a

where the exchange energy is usually adopted as Eexcn = 2.9 €V and the lattice spacing
as a = 3.56 - 1078 cm, with e being the absolute value of the electron charge. Finally,
one can find the following numerical values:

eol =2-10° Gauss, po = 2 - 10% Gauss.

It means that the parameter egl — 44 is positive and the weakening of the magnetic
field inside the graphene is predicted in accordance with (17), (30) and (31) for large r
and its strengthening for small r in accordance with (32) and (33).

In view of the importance of the latter conclusion it would be desirable to investigate
the magnetic field behavior in the central domain of the graphene material, i.e. at small
r but arbitrary z. To this end, we consider the extrapolation of the configuration (23)
to the domain wall structure of the form:

© = 2arctan [exp(—2vr® — 2kz)] . (34)

Later it will be shown that this approximation is valid in the small field limit By — 0.
To start with, we insert (34) and A = Byr/2 + a, R ~ 1/4 into (23), this amounting to
the equation:

1
—0r(r0r) + 02 — % = 27r egBo sin® ©leg] — 4o tanh (vr? + k2)] = 2ar g, (35)
r T

Solution to the equation (35) satisfying boundary condition «(r = 0) = 0 can be
found by Green’s function method:

o= /dz /ds explis(z — /dr’ (s )KL (s ) — Ka(sP) L (s)], (36)

where I; and K7 stand for the modified Bessel functions of the imaginary argument.
Taking into account their asymptotic behavior as z — 0:

L(z)~x/2, Ki(z)~az*,



Rybakov Yu.P., Iskandar M., Ahmed A.B. Magnetic Excitations of Graphene. .. 273

one finds from (35) and (36) that at small r:

7TT360B0

- 4 cosh?(vr? + k2)

a(r, z) [eo — 4po tanh (vr? + kz)] (37)

that confirms the paramagnetic behavior of the graphene in the central domain.
Finally, inserting (37) and R = 1/4 + (, A = Byr/2 into (20), one gets the equation:

1 2 1
—0,(r0,¢) + 0%¢ = sin’ © L(AQ — 3uoBo) + eoBo (1 + 260307«2)] = ji. (38)
r
Solution to (38) can be found also by Green’s function method along similar lines as
for (35):

e}

(= % / dz’ [ ds explis(z — 2')] /dr’ ' j1 [Ko(sr)lo(sr') — Ip(sr)Ko(sr)]. (39)

—00 0

T

Taking into account the asymptotic behavior of the Bessel functions as x — 0:
Ip(x) = 1+2z, Koy(x)=log[2/x],
one finds from (38) and (39) that in the central domain
2

~ 4cosh® (vr2 + Kz)

2 1
C(r,2) ~ Y(AQ — 3uoBo) + eo By (1 - 260307‘2>] . (40)

Using (40), one can verify the validity of the approximation (34) as solution to (21)
for the central domain in the small field limit, that is if the following strong inequalities
hold:

)\Z/I > egBy, eyBorl <1, k*r?<1.

4. Conclusions

We analyzed the two phenomenological approches to the description of the graphene:
the simplest scalar chiral model and its 8-spinor generalization. The scalar model admits
very simple domain-wall solution describing one layer graphene configuration. On the
opposite, the 8-spinor chiral model contains all previous results of the scalar model
and also permits one to describe graphene interaction with the electromagnetic field.
Magnetic excitations in graphene, for the case of the external magnetic field parallel to
the graphene plane, reveal the evident diamagnetic effect: the weakening of the magnetic
field within the graphene sample. As for the case of the magnetic field orthogonal to the
graphene plane, the strengthening of the magnetic intensity inside the material is revealed
in the central domain (at small r).

References

1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,
I. V. Grigorieva, A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films,
Science 306 (2004) 666-669.

2. A. K. Geim, Graphene: Status and Prospects, Science 324 (2009) 1530-1534.

3. C.Lee, X. Wei, J. W. Kysar, J. Hone, Measurement of Elastic Properties and Intrinsic
Strength of Monolayer Graphene, Science 321 (2008) 385-388.



274 RUDN Journal of MIPh. Vol. 25, No 3,2017. Pp. 266-275

4. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau,
Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett. (8) (2008)
902-907.

5. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L.
Stormer, Ultrahigh Electron Mobility in Suspended Graphene, Solid State Commun.
146 (2008) 351-355.

6. D. Yu, L. Dai, Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Super-
Capacitors, J. Phys. Chem. Lett. 1 (2010) 467—470.

7. G. W. Semenoff, Condensed-Matter Simulation of a Three-Dimensional Anomaly,
Phys. Rev. Lett. 53 (1984) 2449-2452.

8. Yu. P. Rybakov, On Chiral Model of Graphene, Solid State Phenomena 190 (2012)
59-62.

9. Yu. P. Rybakov, Spin Excitations in Chiral Model of Graphene, Solid State Phenom-
ena 233-234 (2015) 16-19.

10. A. M. Kosevich, B. A. Ivanov, A. S. Kovalev, Nonlinear Magnetization Waves. Dy-
namical and Topological Solitons, Naukova Dumka, Kiev, 1983, in Russian.

VIK 538.9
DOI: 10.22363/2312-9735-2017-25-3-266-275

MarauTtHble Bo30y2kK1eHust rpadeHa B paMKax 8-CIIMHOPHOI
peajiu3anumu KupaJibHO Moaein

TO. II. Pei6akoB, M. Uckangap, A. B. Axmen

Kagedpa meopemuueckoti pusuru u METAHUKL
Poccutickuti ynusepcumem dpyotcovl Hapodos
ya. Murayxo-Maxaas, 0. 6, Mockea, Poccus, 117198

IIpocreiimas kupaiabHas MOjedb rpadeHa, IpeyoXKeHHas paHee W ocHoBaHHas Ha SU(2)
rmapaMeTpe IMopsiaKa, 0000IaeTCsI MyTeM BBEJIEHUs 8-CIHHOPHOIO IOJIA KaK JOMOJHUTEIHLHOTO
napamerpa HOPsiZKa JIJIsl OIMCAHUSI CIIMHOBBIX (MAarHUTHBIX) BO30y2KaeHnit B rpadene. B kage-
CTBE WJLIIOCTPAIIAN MBI U3y9YaeM B3aUMOJAEHCTBUE PAMEHOBOrO CJIOS C BHENTHUM MATHUTHBIM
mosieM. B ciiydae MarHuTHOrO mOJIs, HapaJsIeIbHOIO IpadeHOBOM IJIOCKOCTH, IPEICKA3bIBACT-
cs TUAMArHUTHBIA 3ddekT, T. e. ocmabiieHne MATHUTHOW WHIYKIIMU BHYTpu obpasmna. OaHako
B CJIydae MArHUTHOTO IIOJIsI, OPTOTOHAIHLHOTO T'PadEHOBON MIOCKOCTH, OOHAPYKUBACTCS YCHUIe-
HUe MAarHUTHON WHIYKIMA B IEHTPAILHON o0mactu (pu Mautbix ). Takum o6pa3oM, MAarHUTHBIE
CBOIICTBa rpadeHa OKa3bIBAIOTCH CHJIBHO aHU30TPOIHBIMHU.

KuroueBrnie cioBa: rpadeH, CIMHOBbIE BO30YK/I€HNs, KUPAJIbHAs MOJEIb, 8-CIIUHOD
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