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The quasi-potential approach is very famous in modern relativistic particles physics.
This approach is based on the so-called covariant single-time formulation of quantum
field theory in which the dynamics of fields and particles is described on a space-like
three-dimensional hypersurface in the Minkowski space. Special attention in this
approach is paid to methods for constructing various quasi-potentials. The quasi-
potentials allow to describe the characteristics of relativistic particles interactions in
quark models such as amplitudes of hadron elastic scatterings, mass spectra, widths
of meson decays and cross sections of deep inelastic scatterings of leptons on hadrons.

In this paper Sturm-Liouville problems with periodic boundary conditions on a seg-
ment and a positive half-line for the 2m-order truncated relativistic finite-difference
Schrodinger equation (Logunov—Tavkhelidze-Kadyshevsky equation, LTKT-equation)
with a small parameter are considered. A method for constructing of asymptotic
eigenfunctions and eigenvalues in the form of asymptotic series for singularly per-
turbed Sturm—Liouville problems with periodic boundary conditions is proposed. It
is assumed that eigenfunctions have regular and boundary-layer components. This
method is a generalization of asymptotic methods that were proposed in the works
of A.N. Tikhonov, A.B. Vasilyeva, and V.F Butuzov. We present proof of theorems
that can be used to evaluate the asymptotic convergence for singularly perturbed
problems solutions to solutions of degenerate problems when ¢ — 0 and the asymptot-
ic convergence of truncation equation solutions in the case m — oco. In addition, the
Sturm—Liouville problem on the positive half-line with a periodic boundary conditions
for the quantum harmonic oscillator is considered. Eigenfunctions and eigenvalues
are constructed for this problem as asymptotic solutions for 4-order LTKT-equation.
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1. Introduction

The relativistic finite-difference analog of the Schrédinger equation
(Logunov—Tavkhelidze-Kadyshevsky equation, LTK-equation) with the quasi-
potential in the relativistic configurational space for the radial wave functions
of bound states for two identical elementary particles without spin has the
form [1]-[13]:

[HE + V(r) — 2ev/ @2 + m2e2]y(r,1) = 0, (1)

. 2 .
H = 2mc? ch (ﬁD> - ALY exp (ﬁD> ,

me mr(r 4 L) me

where m is a mass, ¢ is a momentum, [ is an angular momentum of each
elementary particle and V(r) is a quasi-potential (a piecewise continuous
function).

Asymptotic solutions in the form of regular and boundary layer parts
of boundary value problems for LTK-equation with the quasi-potential on
a segment and on a positive half-line were constructed in the works [14]-[16],
and the question of the asymptotic behavior of the solutions was investigated
when a small parameter € — 0. Also in these works the truncation method
was applied to LTK-equation. Thus, LTK-equation of infinite order was
reduced to the equation of finite 2m-order. Boundary value problems on
a segment and on a positive half-line were formulated for this “truncated”
equation (Logunov—Tavkhelidze-Kadyshevsky truncated equation, LTKT-
equation). Eigenfunctions and eigenvalues in the form of asymptotic series
were constructed for these problems and the solution behavior was studied
when the order of LTKT-equation tends to infinity 2m — oc.

In the paper [17] mass spectra and probabilities of radiative decays of
heavy quarkonia were obtained in the framework of the constituent quark
model of hadrons based on the relativistic Logunov—Tavkhelidze-Kadyshevsky
equation.

Researchers pay a lot of attention to the description of quantum systems
that consist of one-dimensional linear chains of n identical harmonic oscillators
with a nearest neighbor interaction. Periodic boundary conditions, where the
n-th oscillator is coupled back to the first oscillator, and fixed wall boundary
conditions, where the first oscillator and the n-th oscillator are coupled to
a fixed wall, was considered in the paper [18], [19].

In this paper Sturm-Liouville problems with periodic boundary condi-
tions on a segment and a positive half-line are formulated for the truncated
to order 2m relativistic finite-difference Schrodinger equation (Logunov—
Tavkhelidze-Kadyshevsky equation, LTKT-equation) with a small parameter.

For these singularly perturbed problems a method is proposed for con-
structing eigenfunctions and eigenvalues in the form of asymptotic series.
This method allows to obtain asymptotic solutions in the form of regular and
boundary-layer parts. It is also possible to investigate the question of asymp-
totic solutions behavior when ¢ — 0 and 2m — oo. The Sturm-Liouville
problem for 4-order LTKT-equation on a positive half-line with periodic
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boundary conditions is formulated for the quantum harmonic oscillator quasi-
potential and eigenfunctions and eigenvalues in the form of asymptotic series
are constructed.

2. The Sturm—Liouville problems
for the LTKT-equation

We consider the quasi-potential equation [3|-[5] in a relativistic configura-
tion space for the radial wave functions of bounded states for two identical
elementary particles

[HE + V(r) — 2¢7/q2 + m2e2]y(r, 1) = 0, (2)

2 1 :
Hrad _ ch ch ( ify D) + m exp <ﬁD> —

mc mr(r + Zh) mc
00 2 00
=3 o () P g S ()
= @Cpt \mc mr 1"+ p!
dP
pr— 4
drp’

where m is a mass, ¢ is a momentum, [ is a moment of elementary particles
and V (r) is a quasi-potential.

We can limit the speed of light to the infinity (¢ — oo) formally. In this
case, the equation (1) becomes the non-relativistic Schrodinger equation [20]

[—h2D? + K21l + 1) /r* + mV (r) — ¢*] ¥(r) = 0. (3)

Let physical parameter be A =1, m =1, e =% and [ = 0 (case of S-wave)
in (1) where

Ao = 2¢°/V/1+e22+1L,v=V(r), ¢=(1+ 0.2562)\5700))\5700.

We can rewrite the equation (1) in the form as under

[Zio - )‘s,oo]ws,oo(r> = 07 (4)
LS, = Ly + 2
c _op 2(—1)”
=D Ly o(r), Ly = oD, € (0.1,

p=1
Ly=Ly+v(r)= —D? + v(r),

io: 2p—2 f:2<_1)p+1 2p—2 12p+2
=) P2, =) 2222
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The equation (1) is an infinite order differential equation with a small
parameter (¢ < 1) at higher derivatives and we can classify it as singularly
perturbed equations.

We can truncate the equation (4) to a finite equation of 2m-order with
m > 1 and it can be rewritten as follows

[ng - Ae,Qm]q/)e,Qm (’I“) =0,

m
L5, =Ly +e2L5, => e® 2Ly, +v(r),
p=1

= 2p—2 = 2(_1>p+1 2p—2 N)2p+2
Lo =Y %2l =Y L _cw2pwe2
m ~ D o (2p—|—2)”

where L, is the self-adjoint 2-order elliptic operator, ng is the self-adjoint
2m-order elliptic operator, . ,,(r) is the solution of the 2m-order equation.

We can formulate the boundary value problem A2™ on a segment [0, 7]
and the boundary value problem B2™ on a positive half-line [0, +o00) for

defining the eigenfunctions [¢), 5, ,]52; and the eigenvalues [A, ,,, ,]52; for
this differential equation as follows
[Lom = Ac 2] Yeom () =0, (5)
where A _
Dzw€72m<0> — Dzwa’2m<ro), ’l/ — O, 1, 72m — 1, (6)
are the periodic boundary conditions of the problem A?™ and
D', 9, (0) = D", 5, (+00), i=0,1,...,2m —1, (7)

are the periodic boundary conditions of the problem B2™.

If we assume € = 0, we can get the degenerate problems A, and B, for
defining the eigenfunctions [t ,]52; and the eigenvalues [ 52, of following

type as under
[Ly — Aot (1) = 0, (8)
where . ,
Dl%(o) = D2¢0(T0>7 1=0,1, (9)
is the periodic boundary conditions of the problem A, and

is the periodic boundary conditions of the problem B,.

We can consider the question of the behavior of the eigenfunctions
[ 2m 4321 and the eigenvalues [A, 5, ,]52; of the problems A2™ and B2™
in the case when a small parameter tends to zero (¢ — 0) but fixed order

2m of the operator EQM, and in the case when the order m is increased but
a small parameter ¢ is fixed.
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The eigenfunctions [, 5,,, 4152 and [, |52, are the solutions of the corre-
sponding problems A2™, A, and B?™, B,. These solutions are elements of
a Hilbert space H(Qp) with an inner product (¢, ¢) g, = fﬂr W(r) (r)dr
(¥, € H(Qp)), in which there is a set of a linear continuous self-adjoint oper-
ators A(Qp) : H(Qp) — H(Qp) of problems A2™ B2™ A, B, (ng, L, e A,

m > 2), where Qp (I' = A, B) is a domain of the operator (a subscript A
corresponds to a segment [0,r,] and a subscript B is a positive half-line
[0, +00)).

Let |A(Qp)|; denotes the norm of operators A(Q) and we can write

1Ay,
ver g0 1Vl

[ A = ], = (@, 0)5

We can give the sufficient conditions for the solvability of the problems A,
By and A?™ B2™,

Condition 1. The operator L, for the periodic boundary conditions of the
problems A, or B, must be positively defined, i.e.

(Lz(@Do),wo)H(QF) = / Ly (o )b dr = | Dy |? dr +/ v(r)g dr >0,

Qp Qr Qr

for any functions v(r) € C(I') and ¢, € H(Qp) from domain Qp, and it
must satisfy the boundary conditions of the corresponding degenerate problems

(A, or By).

Condition 2. The operator L§,, under boundary conditions of problems
A2™ or B2™ must be positive, i.e.

— 2(_1)P+1 2p—2 2p+2
(L§m¢s,2maw5,2m)H(Qr) = - (2p + 2>”€ P /Q (D Pt ¢5,2m> we,2m dr =
p:

T

=D ool 2| PP g, [Pdr >0,
I o,

for any functions v_ o, € H(Qp) from domain Qr, and it must satisfy the

boundary conditions of the corresponding singularly perturbed problem (Agm or
B2m),

It is known that the degeneration of the problems A%™ B2™ into the
problems A, B, are regular if the number of roots with negative real parts
and positive real parts of an additional characteristic equation, which in our
case has the form

2m < —1 ? 2m\2p—2 _
Pla >=§_;<(2p;”<a yr2 = g,
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coincide with the number of boundary conditions that drop down on the left
and, respectively, on the right when we replace the consideration problems
AZm B2™ to problems A, B,.

Let’s now consider the generalized characteristic form of the operator
m

821"*2L2p, which is obtained by replacing D? with (i&)2P
p=1

m6) =Y S i)

The regular degeneration of the problems A2™ B2™ to A,, B, is fulfilled
if the following condition is true.

Condition 3. If the following inequality take place for the real part of the
sum . (§)

2
(2p)!t

m
P2 >0 T >0,
p=1

Re (m. (€)=

p=1

where C' is not depended on &, then problems A2™ and B?™ degenerate into
problems A, and B regularly.

Let’s assume that a set of eigenvalues A, 5, 1 < Al gm0 < oo <Al < oo
and A\g; < Ago < ... <A, < ... is ordered in ascending order [, 5,, 1|52,
[Ao,Ji21, and this set of eigenvalues corresponds to a complete orthonormal

set of eigenfunctions [¢), 5, 11521, [t 152
Since existence domains 2, of operators ZQm and L, coincide for the
problems A%™ and A, and also for any function v € 4, that satisfies

the boundary conditions of the problem A2™, the following inequality from
Condition 2

€,2m

(L§m¢6,2m7w€,2m>H(QA) > (L2w6,2m7¢5,2m)H(QA)7

holds true, then the following estimate inequality occurs A\
vy=1,2,..
A similar estimate takes place for the problems B2™ and B,.

€,2m,y > )‘0,7’

3. Constructing of asymptotic solutions for boundary
value problems

3.1. General scheme for constructing of the asymptotics. Regular
and boundary series

We can use methods of the singular perturbations theory of differential
equations and find solutions to problems A%™ and B2™.

Let’s search for a formal solution 1), 5, (r) of the problems A2™ and B2™
in the form of asymptotic series
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OYg o (1) = Vo (1,€) + Iy 0(py, &) + Qoptb(py, ) =

= ng(QZZm,k(r) + 1oy, k(1) + Qo 1 ¥(p2)), (11)
k=0

where a partial sum

J
®j¢s,2m<r) = Z €k<,¢_]2m,k(r> + H2m,k¢(p1) + Q2m,k¢<p2)>7

k=0

satisfies inequalities for solutions of the problem A2™

j+1
max ’ws,Qm - @jws,Qm’ < MA et )
T€[0 4,706 4]

and the problem B2™

max | o, — O, 9| < Mp eIt
r6[6B700+)

and similar inequalities for the boundary conditions of these problems, where
My, Mg and 04 < 1, 65 < 1 are positive constants that are independent of
r and €.

The asymptotic solution for 1 have the form as under

€,2m

J
¢€,2m (T) = Zék(&Qm,k(r) + H2m,kw<p1> + Q2m,k¢<p2>) + 5]2m <T>7

k=0

EJQm <T) = ws,2m - @jwsﬂm?
where 22™ (r) = e/*123™(r) is error of the asymptotic approximation of the

J
solution ¢E72m by a partial sum @jwa,Qm'

We can write the regular part of the asymptotic expansion in the form

Vo (1,6) = 152m,0(7’) + 51;2m,1(7°> + 52"&2m,2(7“) +..,

and the singular parts of the asymptotic expansion have the forms as under

Iy, %(py, €) = Iy, 0¥(py) + €lly,, 190(py) + €21y, 50(py) + ..,

for describing the behavior of the solution on the left edge of a segment [0, 7]
or a positive half-line [0, +00),

Qam¥P(p2,€) = sz,(ﬂ/’(f%) + 5Q2m,1¢(,02> + 52Q2m,2¢(/)2) T

for describing the behavior of the solution of the problem A%™ on the right
edge of a segment [0, 7,].

It is known that the function Q,,,%(py,€) = 0 for the problem B*™, since
the solution of the problem B is chosen so that it tends to zero when r — +o0
together with all its derivatives. Here we use new independent (stretched)



I. V. Amirkhanov et al., Asymptotic solution of Sturm—Liouville problem ... 237

variables p; = r/e and py = (ry — r)/e for the boundary functions Il,,, ;v,

QQm k¢ :
Similarly, we can present the simple eigenvalue of A_ 5, in the form of the
asymptotic series in powers of the small parameter € in the form as under

Acom = Aomo +EAgm1 + €5 Ao + oo, (12)

where the partial sum

J
_ E k
®j>‘5,2m - € )‘Qm,k7
k=0

satisfies the condition |\, 5, —©;A, 5,,| < M &7+t where M > 0 is a positive
constant that is independent of r and e.

So an asymptotic approximation of the eigenvalue A, 5, has the form as
under

J
_ E k A 2m
)‘5,2m - € )‘Qm,kz + Aj ’
k=0

where A2 = gIHLAIM parA2™ = X\_,  —©;A_,,, is an error of the asymp-
totic approximation of the eigenvalue A, ,,, for this partial sum.

In addition, we assume that the function v(r) can be decomposed as
a convergent series in the neighborhood of the points » = 0 and r =,

v(r) =Y vkt w(r) =) vi(r—ry)’,
and - -
vipy) = D vletpt, w(py) = Y (—1)l2esps, (13)
s=—1 s=—1

where p; = r/e and p, = (r, —r)/e are the stretched variables.

3.2. The main terms of the asymptotic series

We can determine the terms of the asymptotic series of the decomposition
Vot Moy 10, Qo xth and Ay, . of the problems AZ™ and BZ™ if we
substitute the decomposition (11), (12) and (13) in the equation (5) and the
boundary conditions (6) of the problem A%™ and the equation (5) and the
boundary conditions (7) of the problem B2™, and then we equate all members
of the series that stand at equal powers of a small parameter .

We should use additional requirements for the boundary functions

HQm,kw<pl> - 07 QZm,k¢(p2) — 07 k= 07 17 27 SR

where ¢ — 0 and a fixed r. These requirements allows to select the solutions
Iy, ¥ and Qy,, ;¥ that tend to zero outside the boundary layer only.
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3.2.1. Building a zero approximation of the asymptotic expansion

We can get the systems of equations and determine the solutions 1;2,”’0,
IL,,, 0%, Qam ot and Ay, o of the problems A?™ and BZ™ in a zero approxi-
mation in the form

[L2 - )‘2m,0] QEZm,O = 07 L2 = _D2 + U<T>7

™ o(—1)P d2P

Ly My o0 =0, L}, = ,
2 2m,0 2 ]; (2]9)” dp?p
™ o(—1)P d2P
L3, Qoo =0, L3, = ;

Di (&Zm,O(O) + H2m,0w(0>> = Dl (&2m,0<7_0) + Q2m,0w<F)) )
H2m,0¢(p1) — 0, QQm,O¢(p2> — O, g — 0, Z - O, 17 2, “ee ,2m - ]_,
where 7 = r,, for A?™ and 7 — +o0 for B2™,

The eigenfunctions [1;2m,0,7]:i1 and the eigenvalues [),,, .52, coincide
with the solutions of the corresponding degenerate problems A, or B,.

Thus, we can determine the boundary functions Il,,, 4¥(p;), Qg 0¥ (P2)
if we find the solutions of the boundary value problems as under

L%mHZm,Ow = 07 L%m@%’n,ow = Oa

DiHZm,Ow(O) + DiquQm,O (0) = DZQ2m,O¢(7_a> + DilZZm,O (7_4)7
H2m,0¢(p1) — 0, QQm,O¢<p2) — 0, g — 07 Z — 0, ]_, 2, ,2m - ]_.

We can write the functions Il,,, 4% (p;) and Qy,, ¢¥(ps) in the forms

m—1
2m,1 m
Iy, 0¥ (p1) = Ceo eXp(—a% p1>,
¢=1
m—1
2m,2
Qam,0¥(p2) = Cio eXp(—agmpg).
¢=1

Hence, the number of arbitrary constants C’?g’l and C’?TS”Q equals the number

of disappearing boundary conditions of problems A%2™ or B2™ when we try
formulate the degenerate problems A, or B,.

Let the values agm (¢ =1,...,2m — 2) be the roots of the additional charac-
teristic equation

2m o~ (=1 2m\2p—2 __
P(a ):222@)”(& )22 =,
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Since an algebraic equation
Re(agm) >0, (=1,m—1, Re(agm) <0, ¢(=m,2m—2,

is biquadrate; thus, it has the same number of roots with positive and negative
real parts.

We can get the following relations from the boundary conditions

D'y, h(0) — DiQ2m,o¢(f) = —Di152m70(0) + Di&Qm,O(?)a

where i = 0,1,2,...,2m—1, and we can derive a system of 2m linear equations
like that . .
D2mc2m — b2m, (14)

for finding coefficients C’?g’l, C’?%ﬁ (¢ =1,2,...,m—1), where a system has
form as under
D2m — (D%T 0 ) ,
0 D%En

D%gn = (dl,rC>7T~r,LC_:117 dl,rC = (_a%m)r—1’
D%Qn = (d2,rc>:?§_:117 d2,r§ = _(agm)r—l,

~2mT 2m,1 2m,1 2m,2 2m,2
C = (C’LO’ ""7Cmf’1,0701,0’ 7"‘7Om771,0)7

and where

- pl 7"'7p72nn117Q%m7"'7QEnn11>7
p?m = _Diw2m,0<0)7 qum = Di¢2m,0<77>7 1= 07 17 M) 2m — 17

are block matrices.
Since the values of agm((’ = 1,2m —2) are pairwise different and the

matrices D27, D35, D*™ are non-degenerate and there is an inverse of D™
matrix (D?™)~!, so then the only solution of the algebraic system (14) exists
and it has the form: C>™ = (D?™)~1b?",

Thus, a zero approximation of 1;277%0, Iy, 0%, Qam 0¥ Ao o Of the prob-
lems A2™ and B2™ could be constructed completely.

3.2.2. Further construction of the asymptotic series

We can get the systems of the equations for the problems A2™ and B2™ and
use the additional conditions for finding the solutions ¥y, 1, Iy, ¥, Qo ¥
and Ay, 1 in the case k > 0 in this form

n n 2m
[Ly — )\Qm,o]%m,k = )\Qm,kw2m,0 —hj (1),

L%mHZm,kw = Q%ZL (:01)7 L%mQZm,k¢ = ggin(/)z),
Di (J}Zm,ka)) + H2m,k:¢<0)) = DZ (¢2m,k(f> + QQm,k¢(f))a
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Uy, 10(p1) = 0, Qg x¥(p2) =0, e =0, k=1,2,..., i=0,1,...,2m—1,

2m _ 2p+2,/, 7
M) = ; p ol Vamkeon T ; A2 Vom k-

1 k—
(%
g%l:n (pl) - - P ! HZm,szlw + E ()‘Zm,p - Ull)pzlj) H2m,k;7p72¢7
1 —0

2 k—2
(%
gg?(pZ) = D ! Q2m,k—1w + Z (AQm,p ( )p ;z2)p12)> QQm k—p— 2¢
2 p=0

If the parameter X is a simple proper value of the self-adjoint operator A
that acting in the Hilbert space H () and if the function ¥ € H(p) is
the corresponding normalized eigenfunction [ @) = 1 then in the space

T

H,(Qp) (Hy{(92p) is an orthogonal complement to the function 1 in the space

H(Qp)) and then there is the operator A — A\I that has a bounded inverse

operator (A — /\I);I1

1(Qr)

Hence, the equation Ay — A\p = wip — h, h € H(2p) can be solved and the
solution of this equation could be presented as under

w = (hﬂw)H(QF) (A AI)Hl(QF (CU’(/J - h>7

where (wip — h) € H{(Qp). )
Thus, we can get the solutions vy, 1. ,, and Ay, ;. , for any k& >0

(pseudo-resolvent).

Ao ke = (him»djo,n)H(QF) = / hm(r) Yo (r)dr, n=12 .,
QF
_ . .
w2m,k,n = (LZ - )‘2m,0,n)H1(Qr)hz )

where H;(Qr) is the orthogonal complement to eigenfunctions v ,, € H (),
= A, B) of the degenerate boundary value problem A, or B, where

1Yo nll o) = 1-
We can find the boundary functions Iy, ;%(p;1), Qo k¥ (p2) for k > 0
from the boundary value problems in the form

L%mH2m,k¢ = 9?12”, L%mQ2m,k¢ = 932”7 (15)

D', 1 (0) — D'Qy,, 1 (T) = _Dir‘I}2m,k<0> + Di,&Qm,k(Tn)? (16)
H2m,k¢(ﬁ1) — 0, sz,klb(pg) —0,e—=0, ¢=0,1,....2m—1. (17)

We can write the functions II,,, ;¥ and Qs,, ;% as under
o, 1 ¥(p1) = Uy, 1 00(py) + gy, 100" (1), (18)

sz,lﬂ/}(Pz) = QZm,qu(pQ) + QQm,kw*(p2>7 (19)
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where

m—1
Iy, xP(py) Z C .k Tt exp (—O%mm) )
=1

m—1

Qamm, k¢ p2) Z 2m 2 exp (—oz?”pz)

¢=1

are the general solutions of the homogeneous equations (15), (17), and

—

m—

Mo, x ¥ (p1) = Z ?773’1(,01) exp (—af’”pl) ;
¢=1
m—1

Qom k¥ (p2) = Z sz 2(/)2) exp (—o%mpg) ’
¢=1

are the partial solutions of these inhomogeneous equations.
Since, the roots a?™ are pairwise distinct, then the Vronsky determinants

W [emed™ e et W [0tz et
. 2 m—1
that are composed of the function systems [exp (—acmplﬂc and
=1

[exp ( Oég ,[)2)} " 11 are non-zero.

Using the method of constant variation, we can find the partial solutions
of the inhomogeneous equations (15), (17), i.e

D%Tfh =Fy, D%Qn(% =F,,

o= (M )

U A T ey
a7 — (19 ) AT ea) )
dp, dpy

F—ll— = (07 cee ,O,Q%ZL>’ F; = (07 A 707g§]€m)7

where det |D?7*| # 0, det [D37*| # 0.

We can find the functions C’gj}z’l(pl) and C’g”Z’Q(pg) from the systems as
under Q; = (D) 'Fy, Qy = (D35")'F,.

After integrating and substituting the solutions in (18), (19), we can find
as many arbitrary constants as the boundary conditions of the problems A%™
or B2™ fall out when we proceed to analysis of the degenerate problems A,
or B.

Thus, this algorithm allows us to find the asymptotic solutions of the
problems Agm and B?™ with any desired degree of accuracy of a small
parameter 7.
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4. Asymptotic analysis of the solutions

We can formulate the following theorem for the justification of the asymp-
totic solutions of the problems A%™ and BZ™.

Theorem 1. If the self-adjoint elliptic operators Ly, Lo, satisfy Conditions
1-8 for the problems A%™, B?™,  A,, By and the function v(r) € C* is
represented as the uniformly converging series in the neighborhood of the point
r = 0 and the neighborhood of the point r = r

00 00
=Y ot w(r) =) wilr—ry)’,

s=—1 s=—1

the asymptotic solutions of boundary value problems A*™ and B*™ egist.
The corresponding n eigenvalue A, o, ,, and the corresponding n eigenfunction

Ve om.n(T) of the operator sz have the following asymptotic representations

— 2 +1 A 2m
)‘E,Qm,n = >‘2m,0,n + ‘5)‘2m,1,n +e )‘Qm,Q,n +...+¢& AJ ’

s ,2m, n Z EJ w2m k,n ) + HZm,k,anOl) + QZm,k,nw(pZ» + €j+12]2m<7,>7

where Xy, 0.0 = Ao, 18 n-th simple eigenvalue and &Qm’()’n(r) = g, is the
n-th function of the operator Ly for boundary value problems A, and B,; the

funCtions me,k,n <T>7 H?m,k,n?ﬁ? QQm,k,nw and the values Of )‘Qm,k,n fO’f' k>0
are determined from the systems of the equations and the boundary conditions
given in Paragraph 2.

The estimations for the residual members z?m('r’) and A?m have form as
under | DZ2™ | g + |27 | = O(e7t1), AF™ = O(1), for p-order derivative of
the partial sum © b, o, , is [DI2Z7" | = O(e7 1), 1 < g < s, 8 > 2m—2,
in the inner subdomain [0, 75 — 0] is | DT222™ |y = O(7), |q] <'s, in border
regions (0,0] and [ry —0,1q) is [DI225™ |y = O(e77971), 1 < g < s

Proof. It is assumed that the function © ¢, 5, ,(r) satisfies the boundary
conditions of the problems A?™ and B?™ and

[0l = =1 [Yeomln =1+ 0().

Using series for the constructions of a solution, we can get
[L‘;m - @j/\e,Qm} @wa,Zm (r) = €j+1fj2m7

where ffm is the restricted function (||f]2m||H =0(1)).
According to the estimate, we have the evaluation in the form as under

<50 — MOl g/ 140 s

inf |\ — A,
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where 1 € QO is an arbitrary function from the scope of the operator 'Egm
and A > 0 is an arbitrary real number.

Using the evaluation |4, ,,[ 5 = 1+ O(¢), we can get that

— ~JF+1LA2m
A - @j)\E,Qm -_— 6'7 A] P

£,2m,n
where |A%™] < ||fj||H/||®j1/16’2m |, Hence, we can get the estimate A3™ =
O(1).

Let TY be a closed linear shell consisting of eigenfunctions O;%e 9m.n(T),

corresponding to the corresponding eigenvalues ©;A, 5., ., that are lying on

a segment [\, , —d, Ay, + d], where d is a number d > X (||l2m JQ/)E om —
O\ 2 ©;%. 9| < o), then there is such a function Py € 79, |l = 1,
for which the following inequality |© 1, 5,, — %[, < 2%/d is satisfied.

If € is sufficiently small, then the following inequalities occur

)‘6,2m,n—1 - )‘O,n—l < d? )‘E,Qm,n - )‘O,n < d7 )‘a,2m,n+1 - )‘O,n-i-l < d?

WheI‘e 3d - min[}\o’n - )\O,bel; AO,’I’L+1 —_— AO,TL]'

Thus, a segment [Ao.n — d; Ag ,, + d] contains the single eigenvalue A, o, ,

of the operator Lt which is relevant to the single normalized eigenfunction

2m>
Ve 9m.n (1), Which coinciding with the normalized function 17, and there is
the estimation

% 2, = © % 20m,n/ 1€ 2 | a1 < O(7).

Thus, we can get the estimation |27 = o(1), where 27" = /™1 22™ =

we,Qm,n 0 we 2m,nr and ws 2m,n H® ¢E,2m,n”H wa,Zm,n'

Since the inequality A = N> ¥ =1,2,... is true and there is the ratio

€,2m,y
(L5 = ©jAc 2Ot o (1) = L7 | f3™ 5 = 0(1),
we can get the following estimations

L% = A 2m ™ |1 = O(7H)

E,2m]

and ||L2m j " < LS, — Ae,zm]EJZmHH + |>‘€,2m| ||5]2'm||h = o(e’*1).
Using Conditions 1-3 and assuming that the function ij-m satisfies the

boundary conditions of the problems A?™ and B2™, we can get the following
estimations

m—1
12203 < ) e DPEm G + | DM + |22 < C 20D [wm 7,
p=1
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where the constant C' > 0 which is independent of r and ¢ and the function
w3™ is the restricted function for which the estimation [w?™ |y = O(1) takes
place.

This implies the estimate for 5J2m that is in the conditions of the theorem.

5. Solutions behavior analysis of the problems A2™
and B?™ in the case m — o0

Here we investigate the question about the behavior of the eigenfunctions
and the eigenvalues of A2™ and B2™ problems in the case of unlimited
increasing of 2m-order LTKT-equation.

Let’s consider the problems of A2™ B2™ and A2™*2 B2m+2 for finding
[ws,Zm,'y]:/il? [)‘E,Qm,fy]'c;ozl and [w672m+277]:fo:17 [)‘5,2m+2,'y]$il' Here we assume
that the eigenvalues are arranged in order of monotonic increase.

Let the relations

2m+2 _ 2m+2 _
A2m ?ﬁa,n - w£,2m+2,n - wa,2m,n’ AQm >‘s,n - )‘672m+27n - )‘E,2m7n7

take placev where Hwe,2m+2”H = 17 ||¢5,2m||H =1
We can formulate the following

Theorem 2. If the positive self-adjoint elliptic operators act in the space
H(Qp), Ly, Ly, and satisfy Conditions 1-3 for the problems A2™, B>™ A,
B, then we have the following estimates for m — oo

|A2m+2)\ | < HZE . ’EE || < 2g2m
2m enl X 2m-+2 2milH X (2m+2)”7

|AZm2y 2
2m FenlH S (om oyl

Proof. We can get the ratios

2(_1>m+1€2m oms2

om+271 _ T T _
Ao L =15 Lam = (2m + 2)!! ’

2m+2

)‘6,2m+2,n < SUP[(<A32+2L + ng)% ¢>H] < )‘6,2m,n + )‘7
%)

”SOHH =1, (¢7¢€,2m,7)H =0, Y= In—1,

where ) is the largest positive eigenvalue of the operator A" 2 and there
is the following inequality A < |AZ™+2L|,.

2m+2)\

om Aenl <[L5 — L5, |, where

We get the inequalities |A Smt2

|AZTF2N 1 < 262/ (2m + 2)!1.

e,nl
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Thus, there is the equality

252m

2m+2 —~
[L2m+2 )‘6,2m+2]A " P, = mvzm,

where 0,,, is the restricted function, |y, | = O(1), (Vgy,, A3 24 ) = 0.
We can assume that the operator (L2m +2 — Acomy2) has a limited inverse

operator (me 12— Acom +2)g (a pseudo-resolvent) and there are the ratios

2m4-2 2% 7 1=
AQ% wa = (2m + 2)” <L§m+2 — )‘a,2m+2>;{17}2m’
5 ) 2€2m
and [|AZ Y, g < Gm o Thus, the theorem is proved. 0

6. Construction of an asymptotic solution in the case
of the oscillator potential

We can consider the boundary value problem B2™ on the [0, c0+) axis

with the quasi-potential of a linear harmonic oscillator in the form v(r) = r2.
Analysis of this problem allows to describe the behavior chains of harmonic
oscillators with periodic boundary conditions when they are very far apart
from each other.

The solution of the degenerate boundary value problem B, is an orthonor-
mal system of Hermite functions

Vo = [n!2n\/ﬂil/2 exp(—rz/Q)Hn(r), A, =2n+1, n=135,..,

where )
[n/2] 2,r,n—2m

m!(n —2m)!’

We can show that the zero approximation has equality 1/;2m707n = Vo -
We can find the functions Iy, o ,%(p;) and Qq,, ¢ ,¥(p2) in the form

m—1
H2m,0,n¢(:01) = Z Cokn exXp(—aypy), Q2m,o,n¢(:02) =0,
k=1
d* ¢2 0,n(0)
s—1 4 m,0,n
COk:n Z € k,s d )

1
Hl#s (al o as)

Al,s -
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A r=1 . ) q:17277(m_1)/27 Z7S:17"'7m_]"

=A = —
2, 2g+1
e e Hlis(al _as)

Dty (0) = [n12ny/7) 2 Difexp(=r2/2) H,, (1)) | (p—gyp 7 = 1,3,5, ..

The first approximation of the solution has the forms

¢2m,1,n = ¢0,na )‘Qm,l,n =0,

m—1
H2m,1,nw(p1> = Z Clin exp(—agp), sz,l,nw(fb) =0,

k=

ds
Clkn ng 1Aks wQZZ"Lln( )

The next approximation has the following ratios

—

- 1
me,Z,n = wO,n’ )‘Zm,Z,n = 61(%2 + (TL + 1>2)7 n= 1a 3; 5; ceey

m—1
H2m,1,n¢<pl> = Z Fkn<r7€) exp(—gflakr)’ Q2m,2,nw<;02> = Oa
k=1
m—1
Fkn(r7 6) = Rkn + plTkn7 Rkn = Clk:n - )‘Qm,O,n Z Clpan,k7
p=0
T ClinA B B 1
kn — —VY1kn2m,0,n Pk k> kk — )
! 2m.0 Hﬁék(ag - ak)
m—1
Z (ak a])
_ =Lk _ 1

By k , Bop= .
[ (05— o 7% (o — )T (05— o)

Thus, we can continue the procedure for constructing the asymptotic series
and building an asymptotic solution of the problem under consideration with
accuracy up to any given order €.

7. Conclusions

Recently, there is a great interest in studying properties of bound states
of a quarkonium such as charmonium cc and bottomonium bb. These states
are similar to the properties of positronium (the bound state of an electron
and a positron). Special attention of researchers who deal with bound states
of quarks is paid to quasi-potential methods. The quasi-potential approach
allows to describe the characteristics of relativistic elementary particles such
as amplitudes of hadron elastic scattering, mass spectra and widths of meson
decays, and the cross sections of deep inelastic scattering of leptons on
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hadrons. Since experimental measurements of relativistic elementary particles
are carried out with high accuracy, the quark systems models allow to use the
precision calculation of various parameters. Experiment has amassed a wealth
of high precision data on quarkonium production in relativistic heavy ion
collisions at RHIC and LHC in different kinematical regimes that provides
a challenging testing ground for theory and phenomenology.

We use a quasi-potential approach in our work. The quasi-potential method
in the field theory is based on a two-time Green function for particle systems.
The bounded states of such systems are described by a wave function that
satisfies a quasi-potential Schrédinger-type equation that depends on energy
and non-local potential. The main advantage of this quasi-potential equation is
its three-dimensional character. We have shown the absence of a non-physical
parameter of relative time for this equation. This quasi-potential wave
equation can be obtained for any system numbers of particles with arbitrary
spins. This approach was successfully applied to calculate corrections to
the energy levels of hydrogen-like systems within the framework of quantum
electrodynamics. The great number of properties of the elementary particles
amplitude scattering at high energies is explained using a quasi-potential
Lippman—Schwinger equation with a Gaussian potential. The quasi-potential
method has a number of advantages among the methods of studying the
relativistic two-body problem. The advantage of this approach is that quasi-
potential equations are written out in three-dimensional space, which makes
it possible to use the methods of non-relativistic quantum mechanics.

In this paper Sturm—Liouville problems with periodic boundary condi-
tions on a segment and a positive half-line are formulated for the truncated
to order 2m relativistic finite-difference Schrédinger equation (Logunov—
Tavkhelidze-Kadyshevsky equation, LTKT-equation) with a small parameter.
For these singularly perturbed problems a method is proposed for construct-
ing asymptotic solutions with accuracy up to any given order e. With the help
of this method asymptotic solutions in the form of regular and boundary-layer
parts are obtained and the question of asymptotic solutions behavior when
e — 0 is investigated.

The behavior of solutions is investigated in the case m — oo and estimation
of this behavior is given. It makes possible to determine the convergence of
solutions of the Sturm—Liouville problems for LTKT-equation with periodic
boundary conditions in the case m — oo.

In non-relativistic quantum mechanics, the particle in a one-dimensional
lattice is a problem that occurs in the model of a periodic crystal lattice. The
potential is caused by ions in the periodic structure of the crystal creating
an electromagnetic field, so electrons are subject to a regular potential inside
the lattice. This is a generalization of the free electron model, which assumes
zero potential inside the lattice.

In this work the Sturm—Liouville problem on the positive half-line with
a periodic boundary conditions for the quantum harmonic oscillator is con-
sidered and eigenfunctions and eigenvalues are constructed as asymptotic
solutions for 2m-order LTKT-equation. Their solutions allow to describe the
behavior chains of harmonic oscillators with periodic boundary conditions
when they are very far apart from each other. We can use more complex
quasi-potentials and describe the bounded states of the elementary particles
in the quark-gluon plasma.
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AcumnroTudeckoe perenue 3amaun IItypma—JInyBuiis
C MIEPUOANYECKUMU T'PAHUYIHBIMU yCJIOBUSIMU
JJI PEeJIATUBUCTCKOTO KOHEYHO-PA3HOCTHOTO YpPaBHEHUS
IIpéaunarepa

1. B. Amupxanos!, 1. C. KosiocoBa?, C. A. Bacuibes?

L O6sedunénnmil uncmumym sadeprox uccaedosanudl
ya. Koavo-Kropu, 0. 6, Hyona, Mockosckas obaacmo, Poccus, 141980
2 Poccutickuti yrueepcumem opysctve napodos
ya. Muxayzo-Maxaas, 0. 6, Mockea, Poccus, 117198

Onucanne B3aMMOIEHCTBUST PEJIAITUBACTCKAX JACTUIL B PAMKaX KBa3UIIOTEHIINA b
HOT'O TIOJXOJIa MUPOKO IMPUMEHSIETCsl B COBPEMEHHON (pu3mke. JTOT MOJIX0 OCHOBAH
Ha TaK HA3bIBAEMOI KOBAPUAHTHOUW (DOPMYJIMPOBKE KBAHTOBON TEOPUU IOJIsI, B KO-
TOPO#l 9Ta Teopusl PACCMATPUBAETCS HA MIPOCTPAHCTBEHHO-TIONO00HON TPEXMEPHOIt
TUMEPIOBEPXHOCTHU B mpocTpancTBe MuakoBckoro. Ocoboe BHUMaHME B 3TOM TOIXOIE
YIIEJSIeTCS METOaM TOCTPOCHUS PA3JNYHBIX KBA3UIIOTEHIINAJIOB, & TAKKE MCIIOIb30-
BAHUIO KBA3UIIOTEHITNAJLHOTO TIO/IXOA JJIsi OIIMCAHUS XaPAKTEPUCTUK CBI3aHHDBIX
COCTOSTHUI B KBAPKOBBIX MOJE/IAX, TAKAX KAK aMILIATYIbI & IPOHHOTO YIIPYTOro pacce-
SIHUSI, MACC-CIIEKTPBI U MIUPUHDBI PACIAIOB ME30HOB, CEYEHUs IIyOOKOTO HEYIIPYTOro
paccedgHus JIEITOHOB HA & IPOHAX.

B nmacrosieit pabore chopmymuposanst 3agaqu [lrypma—JIuyBuinsa ¢ nepuogu-
YEeCKMMU FPAHUYHBIMU YCJIOBUAMU HA OTPE3KE W HA IOJIO2KUTEILHON MOy IPAMOit
JIJIS YCEUEHHOT'O PEJIATUBUCTCKOTO KOHEYHO-PA3HOCTHOTO ypasHeHus I1Ipénuarepa
(ypasuenue Jlorynosa—Tasxemunze—Kazpimesckoro, LTKT-ypaBuenue) ¢ MajibiM
napaMeTpoM IpU cTapuleil IPOU3BOIHON.

[esibro paboOThI SABJISIETCST TOCTPOEHUE ACUMITOTUYECKUX perteHnil (CoBCTBeHHbIX
dyHKImii 1 cOGCTBEHHBIX 3HAYEHWIT) B BUJE PEryJISIPHBIX U [OPAHCIONHBIX Ya-
cTeil perenuil Nyt 9TOM CHHTYJIApHO BO3MyIénnoi 3agaqn lrypma—JInyBuiis.
OcHoBHasl 3aj1a9a UCCJIE0OBAHUS COCTOUT B ACUMIITOTUYECKOM aHAJIU3€E IMOBEIeHIe-
CKUX PEIIeHuil paccMaTpuBaeMoil 3aa4qu B ciydae € — 0 m m — co. Hamu Obin
[IPEJJIOZKEH METOJI MOCTPOEHUST ACUMIITOTUIECKUX PeleHnit (co6CTBeHHBIX (DYHK-
Uit ¥ COOCTBEHHBIX 3HAYEHMUIT), KOTOPBIN sABJISAETCH 0OOOIIEHNEM aCUMITOTUIECKIX
METOJIOB PEeIeHUs] CUHTYJISPHO BO3MYIIEHHBIX 3aJ1a4, MIPEJICTABJIEHHBIX B paboTax
A.H. Tuxonosa, A.B. Bacunnesoit u B. ®. Byryzosa. OcHoBHO# pe3ysibTar JaH-
HOM paboOThI — MOKA3aHHBIE TEOPEMbI 00 ACUMIITOTUYIECKON CXOAUMOCTU PEITeHU
CUHTYJISSPHO BO3MYIIEHHOW 33/1a9u K PEIIEeHUsIM BBIPOXKJIEHHON 3asa4 1npu € — 0
u cxonumoctu perrennit yceuéunoro LTKT-ypasuenus B cityuae m — co. Kpome To-
ro, B cTaThbe HaMu paccMmarpuBaercsd 3aga4a [IIrypma—/InyBuiisg Ha mM0I0KUTETHHON
nostyocu it LTKT-ypaBuenus 4-ro nopsijika ¢ NEPUOAMIECKUMU TPAHUIHBIMUA yCJIO-
BUSAMH JIJIs KBAHTOBOI'O TAPMOHUYECKOTO OCIUJLIATOPA. JJist 9TOi 3a/1a9m IOCTPOEHDI
ACUMIITOTUYECKUE TIPUOJIMKEHUsT COOCTBEHHBIX (DYHKITNI 1 COOCTBEHHBIX 3HAYEHUH
7 TTOKA3aHA WX CXOAUMOCTH K PEIICHUIO BBIPOXKICHHON 3aIatH.

KirogeBble ciioBa: acCUMITOTHYECKHM aHAIW3, CHHTYJISPHO BO3MYIIEHHOE
muddepernnuaibaoe ypaBaenue, 3agada Llrypma—JlnyBusuis, peasTuBucTCKOe
KOHeTHO-pa3HocTHoe ypaBuerue [IIpémaunrepa, mepuomuaeckue KpaeBble yCIOBU,
KBa3UIIOTEHIIUAIbHBIN ITOJXO/T,



