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The large-scale structure of the Universe is revealed to be characterized by a range of power-
laws. The power-laws are evidences of fractality because they may be interpreted through
a conception of the Universe as an assembly of self-similar space–time domains. We accept
the hypothesis that the matter of the Universe is described by the scalar charged meson field
possessing the rotary symmetry. On basis of the hypothesis, the fractal cosmological model
with scale invariant Lagrange’s field equation and Einstein’s equation permitting physical
explanation of these properties is constructed. The field energy densities (which are constant)
and the space–time metrics of different domains differ in constant factors only. Therefore,
the space–time domains are geometrically similar and evolve similarly. Fractal properties of
initial cosmological density perturbations remain and lead to presence of the fractal properties
of the Universe’s large-scale structure which formed from them. The nonsingular, compacted,
pulsating and doubly-connected cosmological model as a partial solution for the homogeneous,
isotropic and flat case is constructed. A background radiation power spectrum has been
computed. The spectrum is shown to be close to the observable angular power spectrum of
the SDSS-quasar distribution on the celestial sphere.
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1. Introduction

The large-scale structure of the Universe is the structure of the galaxy and quasar
distribution in whole observable Universe’s volume. The structure is sponge-like and
composed of regions of a higher galaxy number density (filaments and planes of galaxies
and galaxy clusters) bordering huge voids. Scales of these structures are equal to tens
and hundreds of megaparsecs (Mpc).

Investigation of geometrical properties of the large-scale structure of the Universe
through galaxies, galaxy clusters, quasars and the CMB temperature anisotropy is an
important area at present for understanding of galaxy and Universe evolution. Esti-
mation of distances to galaxies is complicated by low quality of spectra, by uncertainty
of galaxy peculiar motion and by dependence on a cosmological model determining
distance as a function of redshift. Consequently, investigation of three-dimensional
galaxy distribution gives not quite reliable results. Therefore, study of statistical and
topological properties of the large-scale structure through two-dimensional galaxy dis-
tribution is relevant despite obvious mistakes related to overlapping of clustering areas.

The purposes of the present work are:
– the data processing on the quasar distribution on the celestial sphere according

to the SDSS DR7 catalogue and on the CMB temperature anisotropy according
to WMAP-7;

– revealing of the fractal properties of the Universe’s large-scale structure;
– construction of the fractal cosmological model permitting physical explanation of

these properties;
– computation of a background radiation power spectrum within the fractal model

framework.
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The SDSS DR7 catalogue [1] containing 105,783 quasars with redshifts 0.0645 6
𝑧 6 5.4608 was used for investigation of the quasar distribution. The catalogue was
compiled by a wide-angle, narrow-angle and pencil beam surveys. For the purpose
of the present work the area of the celestial sphere with the equatorial coordinates
9ℎ < 𝛼 < 16ℎ, 0∘ < 𝛿 < 55∘ covered by the wide-angle survey was chosen. The
main fractal properties of the large-scale structure are represented in Section 2. These
properties may be interpreted through a conception of the Universe as an assembly of
self-similar space domains.

In Section 3 it is shown that the hypothesis of Gaussian (thermal) spectrum of
initial cosmological density perturbations implies they possessed fractal properties,
their correlation function was a power-law. The perturbations lead to the Universe’s
large-scale structure formation due to gravitational instability. However, the equations
of the General Theory of Relativity are not scale invariant. Due to this, the fractal
properties may not remain during gravitational fluctuations evolution, generally.

The hypothesis of the rotary symmetry of the charged scalar meson matter field
(complex field) 𝜓 which then possesses the form 𝜓 = Ψe𝑖𝜙 is considered in Sec-
tion 4. The Universe is composed of space–time domains related by the discrete
scaling: Ψ ↔ Ψ̃ / 𝛾, 𝜙 ↔ 𝛾𝜙. On basis of this hypothesis the cosmological model
with scale invariant (i.e. invariant under the scaling) Lagrange’s field equation and
Einstein’s equation is constructed. The general solution of the equations is derived.
The field energy densities 𝐸 and 𝐸̃ (which are constant) and the space–time metrics

𝑔𝑚𝑛 (𝜓) and 𝑔𝑚𝑛

(︁
𝜓
)︁

differ in a constant factor only. Therefore, these space–time

domains are geometrically similar and evolve similarly. The fractal properties of the
initial density perturbations remain and lead to presence of the fractal properties of
the Universe’s large-scale structure.

The partial solution of the equations in homogeneous and isotropic case is adduced
in Section 5. An equation for the scale factor is derived and solved. The cosmological
model is nonsingular, the Universe is found to be compacted, pulsating and doubly-
connected.

In Section 6 the anisotropy of a background radiation within framework of this
model is considered. When photons pass through the space domains their energies
change due to gravitational frequency shift. An observer receives them and detects
spots with different brightness on the celestial sphere. The power spectrum of the
brightness anisotropy is calculated and revealed to be close to the observed angular
power spectrum of the SDSS-quasar distribution on the celestial sphere. Only quali-
tatively it conforms to the angular power spectrum of CMB.

2. Fractal Properties of the Large-Scle Structure

We performed the SDSS-quasars distribution analysis in framework of the stan-
dard cosmological model with parameters: 𝐻0 = 70 𝑘𝑚 · 𝑠−1 ·𝑀𝑝𝑐−1 is the Hubble
constant, Ω𝑀 = 0.3, ΩΛ = 0.7 are the dimensionless density parameters of dust and
Λ-term respectively [2,3]. Cosmological distance to a quasar with redshift 𝑧 (comoving
distance) is determined by the formula [4]:

𝑟 =
𝑐

𝐻0

𝑧∫︁
0

d𝑧′√︁
Ω𝑀 (1 + 𝑧′)

3
+ΩΛ

.

Distances measured in the Hubble distance 𝑐/𝐻0 are used below.
A variation of SDSS-quasars number density in an element of comoving volume

of a spatial cone of the SDSS catalogue is shown on fig.1a (the number density is
normalized to a maximal value). As one can see, there was an epoch of high galaxy
activity in the Universe evolution at redshift range 0.35 < 𝑧 < 2.30 which has been
chosen for the further investigation. For decrease of significance of evolution effects
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this range has been divided into six layers, possessing qualitatively resembling shape
of the luminosity function. This implies that the same common properties of the
large-scale structure are displayed in every layer.

1a) 1b)

Figure 1. a) Number density of SDSS-quasars in an element of comoving
volume; b) The correlation function of SDSS quasars for the layer 1.04 < 𝑧 < 1.36

1. The correlation dimension computation methods are given in papers [5–7],
for example. This value characterizes quasar clumping degree and difference of the
quasar distribution from a homogenous and isotropic one. The dependence of a quasar
number 𝑁(𝑟) in a sphere on its radius 𝑟 for the chosen redshift range is described by
a power-law:

𝑁 (< 𝑟) ∼ 𝑟𝑑𝑐 , (1)

where the exponent (correlation dimension) is equal to 𝑑𝑐 = 2.17 [2, 3].
The power-law (1) is usually considered as an indication of fractality of a spatial

sources distribution. Similar𝑁 (𝑟) dependence is typical for galaxies (𝑑𝑐 ≈ 1.15÷ 2.25)
and it is a large-scale structure common law [7,8].

2. An analogous relation arises for two-dimensional quasar distribution on the
celestial sphere between a number of quasars with angular distances less than 𝜗 and
sin (𝜗/2):

𝑁 (< 𝜗) ∼
(︂
sin

𝜗

2

)︂𝛼
, (2)

where 𝛼 = 1.49÷ 1.56 for different redshift layers [5, 6].
3. For each layer, the luminosity function parameters and the angular correlation

function 𝜔 (𝜗) of the observable quasar distribution as well as the angular power
spectrum 𝑢𝑙 for its expansion in spherical functions series have been computed using
methods described in [2,3,9,10]. The power spectrum is usually used for comparison of
large-scale structure formation models with observations because the power spectrum
depends on an adopted cosmological model. This fact enables to estimate cosmological
parameters.

Both the angular correlation function and the angular power spectrum are revealed
to possess the similar shape in every layer. They may be described by the power laws

𝜔 (𝜗) ∼ 𝜗1−𝛾 , (3)

𝑢𝑙 ∼ 𝑙𝛾𝑢−3, (4)

respectively with the layer-averaged parameters ⟨𝛾⟩ = 2.08 and ⟨𝛾𝑢⟩ = 1.92. Here,
𝑙 is a multipole moment number. Examples of the correlation function and of the
power spectrum plot for the layer 1.04 < 𝑧 < 1.36 are shown on fig.1b and fig.2a
respectively [2, 3].
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2a)
2b)

Figure 2. Angular power spectrum of: a) SDSS quasars in the layer
1.04 < 𝑧 < 1.36; b) CMB

4. CMB photons show us the Universe as it was at the recombination epoch.
The WMAP experiment proves convincingly that CMB temperature angular fluctua-
tions exist. The angular power spectrum for the expansion of the CMB temperature
anisotropy in a spherical functions series is a power-law as well [2, 3]:

𝐶𝑙 ∼ 𝑙−1.74. (5)

The power spectrum plot is shown on fig.2b. It qualitatively corresponds to the power
spectrum of the quasar distribution (4): 𝑢𝑙 ∼ 𝑙−1.08.

5. For estimation of quasar clump sizes the spherical wavelet transform [11] was
used. The wavelet analysis permits to single out quasar clump areas: the wavelet
coefficients are positive in these areas. Large quasar groups are discovered in papers [2,
3]. For study of fractal properties of the large quasar groups we should determine a
number of groups 𝑁𝑐 with a certain angular size 𝜗𝑐. Their relation has been revealed
to be a power-law:

𝑁𝑐 (𝜗𝑐) ∼ 𝜗−2.08
𝑐 . (6)

These power-laws are evidences of fractality because they may be interpreted
through a conception of the Universe as an assembly of self-similar space domains.
These large quasar groups mark the domains. Let each 𝑖-th domain with a size 𝑟𝑖
contains 𝑚𝑖 pairs of objects (galaxies or quasars). Self-similarity implies the sizes of
domains and numbers of pairs form geometric progressions:

𝑟𝑖 = 𝑞𝑟𝑖−1 = 𝑟0𝑞
𝑖−1, 𝑚𝑖 = 𝑝𝑚𝑖−1 = 𝑚0𝑝

𝑖−1,

where 𝑖 = 1, 2, 3, ... and 𝑝 > 1, 𝑞 > 1 are constant numbers. The total number of
galaxies in the sample and the radius of the sample volume are equal

𝑁 = 2

𝑁/2∑︁
𝑖=1

𝑚𝑖 = 2𝑚0

𝑁/2∑︁
𝑖=1

𝑝𝑖−1 = 2𝑚0
𝑝𝑁/2 − 1

𝑝− 1
≈ 2𝑚0𝑝

𝑁
2 −1, 𝑟𝑁/2 = 𝑟0𝑞

𝑁
2 −1.

Then we obtain the relation (1):

𝑁 = 2𝑚0

(︂
𝑟𝑁/2

𝑟0

)︂ ln 𝑝
ln 𝑞

∼
(︀
𝑟𝑁/2

)︀ ln 𝑝
ln 𝑞 .
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3. Fractal Spectrum of Initial Cosmological Density
Perturbations

We accept a hypothesis that these fractal properties are consequences of fractal
properties of initial matter density perturbations which further led to star, galaxy and
cluster formation due to gravitational instability [12, 13]. Now we observe traces of
these fractal properties through quasars.

This interpretation follows from the hypothesis of Gaussian (thermal) spectrum of
the initial density perturbations. Let’s consider a spherical volume 𝑉 containing mass
𝑀 in a continuous medium. Probability of appearance of thermal density fluctuation
near this mass is defined by the formula [14,15]

𝑊 ∼ exp

[︃
−𝑐𝑣

2

(︂
𝛿𝑇

𝑇

)︂2

− 𝑀

2𝑘𝑇

(︂
𝜕𝑃

𝜕𝜌

)︂
𝑇

(︂
𝛿𝑉

𝑉

)︂2

− 𝑅min

𝑘𝑇

]︃
,

where 𝜌 is medium density, 𝑃 is pressure, 𝑐𝑣 is medium heat capacity at constant vol-
ume, 𝛿𝑇 and 𝛿𝑉 are independent fluctuations of temperature and volume respectively,
𝑅min is minimal work necessary for reversible removal of a mass 𝛿𝑀 for a distance 𝛿𝑟
in the gravity field of the mass 𝑀 . In case of radial displacement the work is equal to

𝑅min ≈ 𝐺
𝑀 · 𝛿𝑀
𝑟2

𝛿𝑟 =
4𝜋

3
𝐺𝜌𝑟 · 𝛿𝑀 · 𝛿𝑟

in Newtonian approximation, where 𝛿𝑀 = 4𝜋𝜌𝑟2𝛿𝑟 is a mass of a spherical layer. In
this case, probability of a thermal fluctuation is equal

𝑊 =
1

2𝜋Δ𝑇Δ𝑟
exp

[︃
− 1

2Δ𝑇
2

(︂
𝛿𝑇

𝑇

)︂2

− 1

2Δ𝑟
2

(︂
𝛿𝑟

𝑟

)︂2
]︃
,

where the variances are equal to

Δ𝑇
2 = 𝑐𝑣

−1, Δ𝑟
2 =

{︂
12𝜋𝜌

𝑘𝑇

[︂(︂
𝜕𝑃

𝜕𝜌

)︂
𝑇

𝑟3 +
8𝜋𝐺𝜌

9
𝑟5
]︂}︂−1

.

The root-mean-square relative density fluctuation (fluctuation spectrum) are equal
to

Δ𝜌 =

⎯⎸⎸⎷⟨(︂𝛿𝜌
𝜌

)︂2
⟩

= 3

⎯⎸⎸⎷⟨(︂𝛿𝑟
𝑟

)︂2
⟩

= 3

{︂
12𝜋𝜌

𝑘𝑇

[︂(︂
𝜕𝑃

𝜕𝜌

)︂
𝑇

𝑟3 +
8𝜋𝐺𝜌

9
𝑟5
]︂}︂−1/2

. (7)

At spatial scales for which pressure gradients are important, i.e. when the first term
in the brackets dominates, we have the “white noise” spectrum (Zel’dovich–Harrison
spectrum): Δ𝜌 ∼ 𝑟−1,5. At large scales for which gravity effects are important,
i.e. when the second term dominates, one has the following spectrum Δ𝜌 ∼ 𝑟−2,5.

The spectrum (7) is scale invariant because the fraction 𝛿𝑟
𝑟 doesn’t change under

scale transformations. This thermal fluctuations spectrum is an example of fractal
spectrum.

The root-mean-square relative density fluctuation is an estimate of the correlation
function according to the correlation function definition [10]: 𝜉 ≈ Δ𝜌. For a random
fluctuation average number of neighbour fluctuations within distance less then 𝑟 may
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be estimated as

⟨𝑁⟩ ≈ 4𝜋 ⟨𝑛⟩
𝑟∫︁

0

(1 + 𝜉) 𝑟2𝑑𝑟,

where 𝑛 is a mean fluctuations number density. In case of fluctuations clumping and
𝜉 > 1 there are fractal laws like (1): ⟨𝑁⟩ ∼ 𝑟1,5 for the white noise and ⟨𝑁⟩ ∼ 𝑟0,5 at
large scales.

The observable correlation dimension value 𝑑𝑐 ≈ 1,15 ÷ 2,25 may follow from the
spectrum ⎯⎸⎸⎷⟨(︂𝛿𝜌

𝜌

)︂2
⟩
∼ 𝑟−1,85 ÷ 𝑟−0,75,

therefore, it permits not only the white noise spectrum.

Thereby, the fractal laws (1)–(6) are expected to exist in Newtonian approximation.
However, it is not quite so in the general theory of relativity because Einstein’s ten-
sor is not invariant under scale transformation of the Riemannian space–time [16,17].
Generally, if the large-scale structure evolution is described by Einstein’s gravity the-
ory the fractal properties may not conserve, even if the initial fluctuations had the
thermal spectrum.

4. General Solution of Lagrange’s and Einstein’s Equations
for the Complex Field with the Rotary Symmetry

We consider a hypothesis that the matter of the Universe is described by the
charged scalar meson field (complex field) which possesses the rotary symmetry [12,13]:

𝜓𝜓* = Ψ2 = const, (8)

(where the asterisk denotes complex conjugation and Ψ is the field amplitude related
to the field charge 𝑄 ∼ Ψ2). The dynamic system of gravity and complex 𝜓 fields is
described by Einstein-Hilbert action within general relativity framework:

𝑆 = − 𝑐3

16𝜋𝐺

∫︁ (︂
𝑅− 8𝜋𝐺

𝑐4
𝐿

)︂√
−𝑔 d4𝑥,

where 𝐺 is Newton’s gravity constant, 𝑅 is scalar curvature, 𝑔 < 0 is determinant of
the metric tensor. We use the following form of complex field Lagrangian:

𝐿 =
1

ℎ𝑐

(︂
𝑔𝑖𝑘

𝜕𝜓

𝜕𝑥𝑖
𝜕𝜓*

𝜕𝑥𝑘
− 𝑈0𝜓𝜓

*
)︂
, (9)

where 𝑈0 is a constant field potential parameter, ℎ is Planck’s constant, 𝑐 is light
velocity. The field Lagrange’s equation is

1√
−𝑔

𝜕

𝜕𝑥𝑘

(︂√
−𝑔𝑔𝑖𝑘 𝜕𝜓

𝜕𝑥𝑖

)︂
= − 𝜕𝑈

𝜕𝜓* . (10)

In Einstein’s equation

𝑅𝑘𝑖 −
1

2
𝑅𝛿𝑘𝑖 = 𝜅𝑇 𝑘𝑖 (11)
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energy-momentum tensor of the complex field is equal

𝑇 𝑘𝑖 =
𝜕𝜓

𝜕𝑥𝑖
𝜕𝐿

𝜕
(︁
𝜕𝜓
𝜕𝑥𝑘

)︁ +
𝜕𝜓*

𝜕𝑥𝑖
𝜕𝐿

𝜕
(︁
𝜕𝜓*

𝜕𝑥𝑘

)︁ − 𝛿𝑘𝑖 𝐿 =
1

ℎ𝑐
𝑔𝑘𝑙
(︂
𝜕𝜓

𝜕𝑥𝑙
𝜕𝜓*

𝜕𝑥𝑖
+
𝜕𝜓

𝜕𝑥𝑖
𝜕𝜓*

𝜕𝑥𝑙

)︂
− 𝛿𝑘𝑖 𝐿,

where 𝑅𝑘𝑖 is Ricci tensor, 𝜅 = 8𝜋𝐺 / 𝑐4 is Einstein’s gravity constant, 𝛿𝑘𝑖 is the Kro-
necker delta.

It’s easily seen that a field of the form of

𝜓 = Ψe𝑖𝜙, 𝜓* = Ψe−𝑖𝜙, (12)

satisfies the condition (8), where field phase 𝜙
(︀
𝑥𝑖
)︀
is a differentiable function. Then

the equation (10) is satisfied by the general solution

𝑔𝑖𝑘 =
1

𝑈0

(︂
4
𝜕𝜙

𝜕𝑥𝑖
𝜕𝜙

𝜕𝑥𝑘
+
𝜕𝜙

𝜕𝑥𝑖
𝑎𝑘 +

𝜕𝜙

𝜕𝑥𝑘
𝑎𝑖

)︂
, (13)

Γ𝑖𝑘𝑙 =
1

𝑈0

𝜕2𝜙

𝜕𝑥𝑘𝜕𝑥𝑙

(︂
𝑔𝑖𝑚

𝜕𝜙

𝜕𝑥𝑚
+ 𝑎𝑖

)︂
,

where derivative
𝜕𝜙

𝜕𝑥𝑖
and covariant vector 𝑎𝑖 must satisfy equations

𝑔𝑖𝑘
𝜕𝜙

𝜕𝑥𝑖
𝜕𝜙

𝜕𝑥𝑘
= 𝑈0, 𝑔𝑖𝑘

(︂
𝜕𝜙

𝜕𝑥𝑖

)︂
;𝑘

= 0, (14)

𝑎𝑖;𝑘 = 0, 𝑎𝑖𝑎
𝑖 = −3𝑈0,

𝜕𝜙

𝜕𝑥𝑖
𝑎𝑖 = 0.

Covariant 𝑎𝑖 and contravariant 𝑎𝑘 vectors satisfy equations:

𝜕𝑎𝑖
𝜕𝑥𝑙

= −3 𝜕2𝜙

𝜕𝑥𝑖𝜕𝑥𝑙
,

𝜕𝑎𝑘

𝜕𝑥𝑙
𝑎𝑘 = 3𝑎𝑘

𝜕2𝜙

𝜕𝑥𝑘𝜕𝑥𝑙
. (15)

This general solution contains isotropic and anisotropic solutions because the deriva-
tive may depend on direction.

The Lagrangian (9) is equal to 0. The Ricci tensor and the energy-momentum
tensor for this solution are equal to:

𝑅𝑖𝑘 =
𝜕Γ𝑙𝑖𝑘
𝑥𝑙
− 𝜕Γ𝑙𝑖𝑙

𝑥𝑘
+ Γ𝑙𝑖𝑘Γ

𝑚
𝑙𝑚 − Γ𝑚𝑖𝑙 Γ

𝑙
𝑘𝑚 =

1

𝑈0

(︂
𝜕2𝜙

𝜕𝑥𝑖𝜕𝑥𝑘
𝜕𝑎𝑙

𝜕𝑥𝑙
− 𝜕2𝜙

𝜕𝑥𝑖𝜕𝑥𝑙
𝜕𝑎𝑙

𝜕𝑥𝑘

)︂
+

+
1

𝑈0
2

(︂
𝜕2𝜙

𝜕𝑥𝑖𝜕𝑥𝑘
𝜕2𝜙

𝜕𝑥𝑚𝜕𝑥𝑙
− 𝜕2𝜙

𝜕𝑥𝑖𝜕𝑥𝑙
𝜕2𝜙

𝜕𝑥𝑚𝜕𝑥𝑘

)︂(︂
𝑔𝑙𝑛

𝜕𝜙

𝜕𝑥𝑛
+ 𝑎𝑙

)︂
𝑎𝑚,

𝑇𝑖𝑘 =
2

ℎ𝑐
Ψ2 𝜕𝜙

𝜕𝑥𝑖
𝜕𝜙

𝜕𝑥𝑘
.

Functions
𝜕𝜙

𝜕𝑥𝑖
, 𝑎𝑖, 𝑎

𝑖 are derived from equations (11) and (15).

The energy density is constant and positive:

𝐸 =
1

ℎ𝑐

(︂
𝑔𝑖𝑘

𝜕𝜓

𝜕𝑥𝑖
𝜕𝜓*

𝜕𝑥𝑘
+ 𝑈0𝜓𝜓

*
)︂

=
2

ℎ𝑐
𝑈0Ψ

2 > 0.
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Therefore, the solution (12)–(13) corresponds to a stationary field condition.

Let the Universe is composed of space–time domains related by the discrete scaling:

Ψ↔ Ψ̃ / 𝛾, 𝜙↔ 𝛾𝜙. (16)

The Christoffel symbols and the Ricci tensor 𝑅𝑖𝑘 don’t change under this transforma-
tion. Vector 𝑎𝑖, metric tensor, enrgy density, mixed components of energy-momentum
and Ricci tensors are multiplied by constant factors:

𝑎𝑖 ↔ 𝛾𝑎̃𝑖, 𝑔𝑖𝑘 (𝜓)↔ 𝛾2
𝑈̃0

𝑈0
𝑔𝑖𝑘

(︁
𝜓
)︁
, (17)

𝐸 ↔ 1

𝛾2
𝑈0

𝑈̃0

𝐸̃, 𝑅𝑘𝑖 ↔
1

𝛾2
𝑈0

𝑈̃0

𝑅̃𝑘𝑖 , 𝑇 𝑘𝑖 ↔
1

𝛾2
𝑈0

𝑈̃0

𝑇 𝑘𝑖 .

Therefore, Einstein’s and Lagrange’s equations don’t change. These domains are ge-
ometrically similar and evolve similarly. The fractal properties of the initial density
perturbations remain and lead to presence of the fractal properties of the Universe’s
large-scale structure.

The phase path of the fields 𝜓 and 𝜓* is a circle (8):

𝜓𝜓* = 𝜓1
2 + 𝜓2

2 = Ψ2, 𝜓 = 𝜓1 + 𝑖𝜓2, 𝜓* = 𝜓1 − 𝑖𝜓2.

The function 𝜙 is a degree of rotation round the circle. Length of a circle arc i.e. an
interval of a set {𝜓1, 𝜓2} is equal

d𝐹 2 = (d𝜓1)
2
+ (d𝜓2)

2
= d𝜓d𝜓* = Ψ2 𝜕𝜙

𝜕𝑥𝑖
𝜕𝜙

𝜕𝑥𝑘
d𝑥𝑖d𝑥𝑘.

The relation between the phase space interval d𝐹 and the space–time interval d𝑠 is

d𝐹 2 =
1

4
Ψ2

[︂
𝑈0d𝑠

2 −
(︂
𝑎𝑖
𝜕𝜙

𝜕𝑥𝑘
+ 𝑎𝑘

𝜕𝜙

𝜕𝑥𝑖

)︂
d𝑥𝑖d𝑥𝑘

]︂
. (18)

The first equation (15) has the following solution:

𝑎𝑖 = −3
𝜕𝜙

𝜕𝑥𝑖
+ 𝑑𝑖,

where 𝑑𝑖 is a constant vector

(︂
𝜕𝑑𝑖
𝜕𝑥𝑘

= 0

)︂
. The expression (18) shows that the vector

𝑑𝑖 may be chosen so that the phase space interval is proportional to the time interval:
d𝐹 ∼ d𝑡. Therefore, the solution (12)–(13) may describe a time-pulsating cosmological
model. As energy density of the system is finite this model must be nonsingular [12,13].

5. Partial Solution for Homogeneous and Isotropic Case

Let’s consider a partial solution corresponding to a homogeneous, isotropic and

flat case

(︂
𝜕𝜙

𝜕𝑥1
=

𝜕𝜙

𝜕𝑥2
=

𝜕𝜙

𝜕𝑥3
=
𝜕𝜙

𝜕𝑥

)︂
: d𝑠2 = 𝑐2d𝑡2 − 𝑎2

[︁(︀
d𝑥1
)︀2

+
(︀
d𝑥2
)︀2

+
(︀
d𝑥3
)︀2]︁

.

Mixed Ricci tensor components and scalar curvature are equal:

𝑅0
0 = − 1

𝑐2

[︂
3
(︁𝑎𝑡
𝑎

)︁
𝑡
+ 3

(︁𝑎𝑡
𝑎

)︁2]︂
, 𝑅1

1 = 𝑅2
2 = 𝑅3

3 = − 1

𝑐2

[︂(︁𝑎𝑡
𝑎

)︁
𝑡
+ 3

(︁𝑎𝑡
𝑎

)︁2]︂
,
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𝑅 = − 1

𝑐2

[︂
6
(︁𝑎𝑡
𝑎

)︁
𝑡
+ 12

(︁𝑎𝑡
𝑎

)︁2]︂
,

where 𝑎 is a scale factor of the model, index 𝑡 denotes partial derivative with cosmolog-
ical time. We may add a total derivative with time of any function to the Lagrangian:

𝐿 =
1

ℎ𝑐

(︂
𝑔𝑖𝑘

𝜕𝜓

𝜕𝑥𝑖
𝜕𝜓*

𝜕𝑥𝑘
− 𝑈0𝜓𝜓

*
)︂
+

d𝐹

d𝑡
,

and Einstein’s equation (11) with the energy-momentum tensor

𝑇𝑖𝑘 =
2

ℎ𝑐
Ψ2 𝜕𝜙

𝜕𝑥𝑖
𝜕𝜙

𝜕𝑥𝑘
− 𝑔𝑖𝑘

d𝐹

d𝑡

comes to the following two equations:

3
(︁𝑎𝑡
𝑎

)︁2
=

2𝜅

ℎ𝑐
Ψ2

(︂
𝜕𝜙

𝜕𝑡

)︂2

− 𝜅𝑐2d𝐹
d𝑡
,

1

𝑐2

[︂
2
(︁𝑎𝑡
𝑎

)︁
𝑡
+ 3

(︁𝑎𝑡
𝑎

)︁2]︂
= −2𝜅

ℎ𝑐
Ψ2 1

𝑎2

(︂
𝜕𝜙

𝜕𝑥

)︂2

− 𝜅d𝐹
d𝑡
. (19)

Lagrange’s equation (10) turns into two equations:(︂
1

𝑐

𝜕𝜙

𝜕𝑡

)︂2

− 3

𝑎2

(︂
𝜕𝜙

𝜕𝑥

)︂2

= 𝑈0,

1

𝑐2
𝜕2𝜙

𝜕𝑡2
− 3

𝑎2
𝜕2𝜙

𝜕𝑥2
+

3

𝑐2
𝑎𝑡
𝑎

𝜕𝜙

𝜕𝑡
= 0. (20)

Four equations (19)–(20) determine four functions: 𝑎,
𝜕𝜙

𝜕𝑡
,
𝜕𝜙

𝜕𝑥
,
𝜕2𝜙

𝜕𝑥𝜕𝑡
. Equations (19)

and the first equation (20) lead to the equation determining scale factor 𝑎:(︁𝑎𝑡
𝑎

)︁
𝑡
+ 2

(︁𝑎𝑡
𝑎

)︁2
− 𝜅𝑐

3ℎ
𝑈0Ψ

2 = −2𝜅𝑐2

3

d𝐹

d𝑡
. (21)

The hyperbolic solution of this equation corresponds to the case of zero field La-

grangian and
d𝐹

d𝑡
= 0: 𝑎 = 𝑎0

√︃
cosh

(︂
𝑡

𝜏

)︂
, where 𝜏 =

(︂
2𝜅𝑐

3ℎ
𝑈0Ψ

2

)︂− 1
2

. If we choose

d𝐹

d𝑡
=

1

ℎ𝑐
𝑈0Ψ

2 the equation has the periodic solution

𝑎 = 𝑎0

√︃
cos

(︂
𝑡

𝜏
+ 𝜑

)︂
(22)

with period 2𝜋𝜏 . The scale factor (22) turns into zero at the moment 𝑡* when
𝑡*
𝜏
+𝜑 =

𝜋

2
± 𝜋𝑛. The solution (22) is not singular within the interval 0 6

𝑡

𝜏
6 2𝜋 if

𝑡*
𝜏
> 2𝜋.

This condition permits to choose the phase:
𝜋

2
± 𝜋𝑛 − 𝜑 > 2𝜋. Therefore the model

is not singular if

𝜑 < −3𝜋

2
± 𝜋𝑛. (23)
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The equation (21) has the integral for the periodic solution (22) that is a map of
the phase path (8) in the space–time:(︁𝑎0

𝑎

)︁4
− 4𝜏2

(︁𝑎𝑡
𝑎

)︁2
= 1.

Derivatives of the phase coordinate 𝜙 are equal:

1

𝑐2

(︂
𝜕𝜙

𝜕𝑡

)︂2

=
1

4
𝑈0

[︂(︁𝑎0
𝑎

)︁4
+ 1

]︂
,

1

𝑎2

(︂
𝜕𝜙

𝜕𝑥

)︂2

=
1

12
𝑈0

[︂(︁𝑎0
𝑎

)︁4
− 3

]︂
.

One can define the metric tensor in the form analogous to the general definition (13)
through these expressions. Further, the expressions imply that the parameter 𝑎0 is
a maximal scale factor value for the solution (22): 𝑎 > 1

3√3
𝑎0. The comoving radial

coordinate of the horizon is equal:

𝑟 (𝑡) =

𝑡∫︁
0

𝑐d𝑡

𝑎
=

2𝑐𝜏

𝑎0
𝐹

(︂ 𝑡
𝜏 + 𝜑

2
, 2

)︂
,

where 𝐹
(︁

𝑡
𝜏 +𝜑

2 , 2
)︁
is an elliptic integral of the first kind possessing recurring values

with period 2𝜋𝜏 .
Since the horizon comoving radial coordinate values are repeated, a model with

pulsating space–time corresponds to the solution (22). This model is compacted, i.e.
the total space volume is finite and the evolution in time is a periodic process of space
expansion and contraction. In the presence of the phase restriction (23) the space
contracts to minimal nonzero volume. The two-dimensional analogy of such space–
time is a torus with variable thickness where parallels are lines of time (lines of constant
space coordinates) and meridians are space coordinate lines. Analogous compacted
model has been constructed in the paper [18] and possible astrophysical consequences
of space volume finiteness are discussed there. It has been showed there that dynamical
entropy of the complex field is increasing during space pulsating [12,13].

6. Anisotropy of a Background Radiation

Light signals transfer along isotropic geodesics of space–time (13). An isotropic
vector satisfies equations:

𝑝𝑖𝑝
𝑖 = 0, 𝑝𝑖;𝑘 = 0.

Under solution (13) these equations are satisfied by the vector

𝑝𝑖 =
√
3
𝜕𝜙

𝜕𝑥𝑖
+ 𝑎𝑖. (24)

Under the discrete scaling (16) this vector transforms by the rule:

𝑝𝑖 ↔ 𝛾𝑝𝑖. (25)

Therefore, an isotropic vector remains isotropic under the scaling.
Self-similarity of space–time domains described by the solution (13) permits con-

sideration of an assembly of such domains because transition from any domain to an-
other resolves itself into dilatation or compression of an interval. Directions of isotropic
geodesics don’t change. Let’s consider transfer of photons of a background radiation
within such fractal structure. We take into account gravitational influence of every do-
main only and leave out of account direct interaction with substance (absorption and
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scattering). In this case, energy of transferring photon changes due to gravitational
frequency shift. Let the background radiation is homogeneous and isotropic, and an
observer receives photons which passed through the fractal structure. Brightness dif-
fers from one domain to another because energy of photons changes being multiplied
by a scaling factor for each domain according to the expression (25). Therefore, the
observer notices spots of different brightness in the distribution of the background
radiation brightness on the celestial sphere.

An angular distance between a center of the 𝑗-th spot and any point of the spot is
equal

𝜗 = arccos (cos 𝛿𝑗 cos 𝛿 cos (𝛼− 𝛼𝑗) + sin 𝛿𝑗 sin 𝛿),

where (𝛿, 𝛼) and (𝛿𝑗 , 𝛼𝑗) are declinations and right ascensions of the point and of the
spot center respectively. The whole spot is described by Legendre polynomial of degree
𝑙𝑗 and its representation through spherical harmonics (the addition theorem):

𝑃𝑙𝑗 (cos𝜗𝑗) =
4𝜋

2𝑙𝑗 + 1

𝑚=+𝑙𝑗∑︁
𝑚=−𝑙𝑗

𝑌
𝑙𝑗
−𝑚 (𝑗)𝑌 𝑙𝑗𝑚 (𝛼, 𝛿) . (26)

The multipole number 𝑙𝑗 and the spot’s size 𝜗𝑗 are related by the expression

𝜃𝑗 ≈
𝜋

𝑙𝑗
=

180∘

𝑙𝑗
. The polynomial (26) is of the bell shape in the range 0 6 𝜗𝑗 6 𝜃𝑗

with maximum equal to 1 when 𝜗𝑗 = 0.

Summarized brightness distribution of the background radiation may be expressed
now as

𝐹 (𝛼, 𝛿) =

𝑁∑︁
𝑗=1

𝛾𝑗𝑃𝑙 (𝑗, 𝛼, 𝛿) , (27)

where the scaling factor 𝛾𝑗 takes into account change of photons’ energy when leaving
the 𝑗-th domain. For determination of the power spectrum of the background radiation
brightness distribution anisotropy the function (27) should be expanded in a spherical
harmonics series:

𝐹 (𝛼, 𝛿) =
∑︁
𝑚,𝑙

𝑎𝑚𝑙𝑌
𝑙
𝑚 (𝑗, 𝛼, 𝛿) .

The power spectrum is a function 𝐶𝑙 =
1

2𝑙 + 1

∑︀𝑚=𝑙
𝑚=−𝑙 |𝑎𝑚𝑙|

2
. Using definitions (26)

and (27) we can determine the serial expansion coefficients 𝑎𝑚𝑙:

𝑎𝑚𝑙 =
4𝜋

2𝑙 + 1

𝑁∑︁
𝑗=1

𝛾𝑗

𝑚=𝑙∑︁
𝑚=−𝑙

𝑌 𝑙−𝑚 (𝑗) .

The normalization condition for the spherical harmonics on a whole sphere is used
here: ∫︁

𝑌
𝑙𝑗
−𝑚𝑌

𝑙
𝑚𝑑Ω = 𝛿𝑙𝑙𝑗 .

In the simplest case of symmetric spots, the weight factors 𝛾𝑗 are proportional to

the spot’s angular size, 𝛾𝑗 ∼ 𝜃𝑗 ≈
𝜋

𝑙𝑗
, and determine the dependence of the expansion

coefficients on the multipole numbers: 𝑎𝑚𝑙 ∼
𝑁∑︁
𝑗=1

𝛾𝑗 ∼
𝑁∑︁
𝑗=1

1

𝑙𝑗
. In this case, the power
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spectrum may be close to the power-law:

𝐶𝑙 ∼
1

2𝑙 + 1

⎛⎝ 𝑁∑︁
𝑗=1

1

𝑙𝑗

⎞⎠2

∼ 𝑙−1. (28)

The model power spectrum (28) closely corresponds to the power spectrum of
SDSS-quasars (4).

7. Conclusion

The main results of the present work are following.
– Revealing of fractal properties of the large-scale structure of the Universe which

are described by the power-laws (1)–(6). The fractal dimension value for the
large quasar group distribution in sizes is compared to that of polygonal path of
Brownian particle (length distribution of segments). This analogy indicates that
initial density perturbations from which large quasar groups arise, apparently,
had a thermal spectrum.

– Interpretation of these properties through a conception of the Universe as an
assembly of self-similar space–time domains related by the scaling (16).

– Construction on basis of this hypothesis of the fractal cosmological model with
scale invariant (i.e. invariant under the scaling) Lagrange’s and Hilbert-Einstein
equations permitting physical explanation of these properties.

– Construction of the nonsingular, compacted, pulsating and doubly-connected cos-
mological model as a partial solution for the homogeneous, isotropic and flat case.

– Computation of a background radiation power spectrum within the fractal cos-
mological model. The spectrum is shown to be close to the observable angular
power spectrum of the SDSS-quasar distribution on the celestial sphere. It differs
from the average power spectrum of the observable CMB anisotropy (WMAP-7).
This fact will be a subject of investigation in further works.

Computation of the cosmological density perturbation evolution due to gravitational
instability within fractal cosmological model framework will be the next step in this
investigation.
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Обнаружено, что крупномасштабная структура Вселенной характеризуется рядом
степенных зависимостей. Эти степенные законы являются признаками фрактальности,
потому что их можно объяснить, если представить Вселенную как совокупность самопо-
добных пространственно-временных областей. Выдвигается гипотеза, что материя Все-
ленной описывается скалярным заряженным мезонным полем с вращательной симмет-
рией. На основе этой гипотезы построена фрактальная космологическая модель с мас-
штабно инвариантными уравнениями Лагранжа и Эйнштейна, которая позволяет дать
физическую трактовку фрактальных свойств крупномасштабной структуры. Плотности
энергии (являющиеся постоянными) и метрические тензоры различных пространственно-
временных областей отличаются лишь постоянным множителем. Следовательно, эти об-
ласти геометрически подобны и эволюционируют одинаково. Фрактальные свойства на-
чальных космологических флуктуаций плотности сохраняются и приводят к наличию
фрактальных свойств у крупномасштабной структуры, которая из них образовалась.
Построена несингулярная, компактная, пульсирующая и двусвязная космологическая
модель как частное решение для однородного, изотропного и плоского случая. Выведен
спектр мощности фонового излучения в данной модели. Этот спектр близок к наблю-
даемому угловому спектру мощности распределения SDSS-квазаров на небесной сфере.

Ключевые слова: квазары, крупномасштабная структура, фрактальная размер-
ность, комплексное поле, вращательная симметрия, фрактальные свойства крупномас-
штабной структуры, фрактальная космологическая модель, фоновое излучение.




