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We implement several explicit Runge–Kutta schemes that preserve quadratic
invariants of autonomous dynamical systems in Sage. In this paper, we want to
present our package ex.sage and the results of our numerical experiments.
In the package, the functions rrk_solve, idt_solve and project_1 are constructed

for the case when only one given quadratic invariant will be exactly preserved.
The function phi_solve_1 allows us to preserve two specified quadratic invariants
simultaneously. To solve the equations with respect to parameters determined
by the conservation law we use the elimination technique based on Gröbner basis
implemented in Sage. An elliptic oscillator is used as a test example of the presented
package. This dynamical system has two quadratic invariants. Numerical results of
the comparing of standard explicit Runge–Kutta method RK(4,4) with rrk_solve are
presented. In addition, for the functions rrk_solve and idt_solve, that preserve only
one given invariant, we investigated the change of the second quadratic invariant
of the elliptic oscillator. In conclusion, the drawbacks of using these schemes are
discussed.

Key words and phrases: Explicit Runge–Kutta method, quadratic invariant, dy-
namical system, Sage

1. Quadratic invariant and conservative RK scheme

One of most widespread mathematical models is an autonomous system of
ordinary differential equations, i.e., the system of the form

⎧{
⎨{⎩

𝑑𝑥
𝑑𝑡

= 𝑓(𝑥), 𝑡 ⩾ 0,

𝑥(0) = 𝑥0,
(1)

where: 𝑡 is an independent variable, commonly interpreted as time; 𝑥 is
a vector (𝑥1, … , 𝑥𝑛); 𝑓 is a vector function (𝑓1, 𝑓2, … , 𝑓𝑛), when in applications
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its element 𝑓𝑖 (𝑖 = 1, 2, … , 𝑛) is often taken as a rational or an algebraic
function of the coordinates 𝑥1, … , 𝑥𝑛 or one can be reduced to this form by
some transformation of variables.

Definition 1 (Goriely [1]). If there exists a function 𝐼 of 𝑥, such that, for
any solution 𝑥(𝑡) of system (1), the condition

∇𝐼(𝑥)𝑓(𝑥) =
𝑛

∑
𝑘=1

𝑑𝑥𝑘
𝑑𝑡

𝜕𝐼
𝜕𝑥𝑘

=
𝑛

∑
𝑘=1

𝑓𝑘(𝑥(𝑡)) 𝜕𝐼
𝜕𝑥𝑘

= 0,

holds, then 𝐼 is called the first integral or invariant of the system (1). If 𝑥(𝑡)
is any exact solution of system (1) then 𝐼(𝑥(𝑡)) is independent of 𝑡. If 𝐼
is a polynomial of degree 2 with respect to 𝑥 then it is called a quadratic
invariant.

Any quadratic invariant after a linear transformation can be rewritten in
the form

𝐼(𝑥(𝑡)) = 𝑥(𝑡)𝑇𝑆𝑥(𝑡) = ⟨𝑆𝑥(𝑡), 𝑥(𝑡)⟩ = const, (2)

where ⟨⋅ , ⋅⟩ denote the Euclidean inner product on ℝ𝑛 and 𝑆 ∈ ℝ𝑛×𝑛 is
a symmetric, constant matrix.
To determine an uniform grid (with a step Δ𝑡) of the time interval [0, 𝑇 ]

we take
𝑡𝑛 = 𝑛Δ𝑡 (𝑛 = 0, … , 𝑁).

We will interpret {𝑥𝑛} as an approximation to the exact solution 𝑥(𝑡) at
time 𝑡0 + 𝑛 Δ𝑡, i.e.

𝑥(𝑡0 + 𝑛Δ𝑡) ≈ 𝑥𝑛.
For the system (1) Runge–Kutta scheme (RK scheme) with 𝑠 stages can

be written as

𝑘𝑖 = 𝑥𝑛 + Δ𝑡
𝑠

∑
𝑗=1

𝑎𝑖𝑗𝑓 (𝑘𝑗) , 𝑖 = 1, 2, … , 𝑠 (3)

and

𝑥𝑛+1 = 𝑥𝑛 + Δ𝑡
𝑠

∑
𝑖=1

𝑏𝑖𝑓 (𝑘𝑖) . (4)

Below the parameters 𝑎𝑖𝑗 and 𝑏𝑖(𝑖 = 1, 2, ..., 𝑠, 𝑗 = 1, 2, ..., 𝑠) will be ar-
ranged in an array

𝑐1 𝑎11 𝑎12 ⋯ 𝑎1𝑠
𝑐2 𝑎21 𝑎22 ⋯ 𝑎2𝑠
⋮ ⋮ ⋮ ⋱ ⋮

𝑐𝑠 𝑎𝑠1 𝑎𝑠2 ⋯ 𝑎𝑠𝑠

𝑏1 𝑏2 ⋯ 𝑏𝑠
where

𝑐𝑖 =
𝑠

∑
𝑗=1

𝑎𝑖𝑗,
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is known as the Butcher table [2], [3] and will be called the coefficients of
the RK scheme. The RK method is explicit if 𝑎𝑖𝑗 = 0 for 𝑖 ≤ 𝑗, otherwise is
implicit.

We want to construct numerical solutions 𝑥0, 𝑥1, … , 𝑥𝑁 such that the
quadratic invariant 𝐼(𝑥) is preserved numerically, i.e.

⟨𝑆𝑥𝑛, 𝑥𝑛⟩ = ⟨𝑆𝑥0, 𝑥0⟩ 𝑖 = 1, … , 𝑁. (5)

In this case the RK method will be called S-conservative RK scheme.
Ref. [4]–[6] indicated that the RK method preserves the quadratic first

integrals of system (1) iff the coefficients of such RK method satisfy

𝑏𝑖𝑎𝑖𝑗 + 𝑏𝑗𝑎𝑗𝑖 − 𝑏𝑖𝑏𝑗 = 0, 𝑖, 𝑗 = 1, … , 𝑠. (6)

Such Runge–Kutta methods are called symplectic.

Obviously, no explicit RK schemes satisfies the symplectic condition [6], [7].
Unfortunately, during using the implicit schemes, we must solve a system of
non-linear algebraic equations at each step. This is very complex problem,
so implicit schemes require more resources than explicit RK schemes [8].
Furthermore numerical solutions of nonlinear system (for ex., by the Newton
method) introduce new errors that sometimes we cannot estimate effectively
[9]. Thus, the integrals could not be preserved exactly. For this reason,
many authors try to construct numerical methods for solving the system of
differential equations (1) with the preservation of algebraic integrals without
the need to solve nonlinear algebraic equations.

To overcome these difficulties Buono and Mastroserio [10] suggested
a method that uses explicit RK schemes for the construction of new finite-
difference schemes which exactly preserve invariants. Below we will call it the
Buono method for shorthand. Of course, these new schemes are not standard
RK schemes, but they are usually called an explicit RK scheme preserving
invariants [8]. These schemes preserve only one specified invariant. We imple-
mented several such schemes in Sage and investigated what happens to other
invariants. Next, we investigated the method from th article [11] by Calvo
et al. which is an extension of the Buono method and can be used as a con-
servation one or more invariants. Below we will call it the Calvo method for
shorthand.

2. Explicit RK scheme of preserving one quadratic
invariant

2.1. The Buono method

To make the explicit RK scheme conservative, we follow to Buono and
Mastroserio [10]. We scale the weights 𝑏𝑖 by a parameter 𝛾𝑛 ∈ ℝ at the step
𝑛, i.e. use

𝑥𝑛+1
𝛾 = 𝑥𝑛 + Δ𝑡

𝑠
∑
𝑖=1

𝛾𝑛𝑏𝑖𝑓(𝑘𝑖) (7)
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instead of 𝑥𝑛+1 obtained by the formula (4) numerical solution after one time
step.
Using the shorthand

Δ𝑛 =
𝑠

∑
𝑖=1

𝑏𝑖𝑓(𝑘𝑖),

the parameter 𝛾𝑛 could be estimated by the conservative condition, i.e.

⟨𝑆𝑥𝑛+1
𝛾 , 𝑥𝑛+1

𝛾 ⟩ − ⟨𝑆𝑥𝑛, 𝑥𝑛⟩ = 𝛾𝑛Δ𝑡(2⟨𝑆𝑥𝑛, Δ𝑛⟩ + 𝛾𝑛Δ𝑡⟨Δ𝑛, Δ𝑛⟩). (8)

Thus, we preserve the invariant ⟨𝑆𝑥, 𝑥⟩, if we take

𝛾𝑛 = − 2⟨𝑆𝑥𝑛, Δ𝑛⟩
Δ𝑡⟨Δ𝑛, Δ𝑛⟩

. (9)

For Runge–Kutta schemes of order 𝑝 this expression is close to 1, i.e

𝛾𝑛 = 1 + 𝒪(Δ𝑡𝑝−1)

as Δ𝑡 → 0, see Buono at al. [10, prop. 4] for 𝑝 = 4 and Zhang at al. [8,
lemma 3.3]. Thus, the new numerical solution 𝑥𝑛+1

𝛾 can be considered as an

approximation either to 𝑥(𝑡𝑛 + Δ𝑡) with the RK weights scaled by 𝛾𝑛, or to
𝑥(𝑡𝑛 + 𝛾𝑛Δ𝑡) with the time Δ𝑡 scaled by 𝛾𝑛. Zhang at al. [8] denote the
method defined by (3) and (7) with the interpretation

𝑥𝑛+1
𝛾 ≈ 𝑥(𝑡𝑛 + 𝛾𝑛Δ𝑡)

as the relaxation Runge–Kutta method (RRK), while the method using

𝑥𝑛+1
𝛾 ≈ 𝑥(𝑡𝑛 + Δ𝑡)

this is called the increment direction technique (IDT). Note that the value of
the scalar parameter 𝛾𝑛 at each step depends on the quadratic invariant that
appears in rrk or idt method.

Theorem 1 (Zhang et al. [8]). Let the original RK scheme be defined by
(3) and (4) has order 𝑝, then the method defined by (3) and (7) has:

— (RRK method) If the solution 𝑥𝑛+1
𝛾 is interpreted as an approximation to

𝑥(𝑡𝑛 + 𝛾𝑛Δ𝑡), the method has order 𝑝.
— (IDT method) If the solution 𝑥𝑛+1

𝛾 is interpreted as an approximation to

𝑥(𝑡𝑛 + Δ𝑡), the method has order 𝑝 − 1.

In our package ex.sage for Sage [12] the function rrk_solve(P1,F,ics)

returns the numeric points (0, 𝑥0), (𝛾0Δ𝑡, 𝑥1), ⋯ with the parameters:

— P1 is a quadratic invariant;
— F is the right sides of system (1)
— ics is the initial condition
— the default Δ𝑡 = 0.1, 𝑇 = 10
— 4-stage explicit RK scheme with the Butcher table
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0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

Function idt_solve() returns the numerical points (0, 𝑥0), (Δ𝑡, 𝑥1), ⋯ with
the parameters:

— P1 is a quadratic invariant;
— F is the right sides of the system (1)
— ics is the initial condition
— the default Δ𝑡 = 0.1, 𝑇 = 10
— 4-stage explicit RK scheme with coefficients the same as the previous
table.

Users can redefine these variables in both functions, for ex., by adding
dt=0.01 or new explicit RK method.

2.2. Elliptic function test

To test this routine, we investigate a nonlinear oscillator. By the definition of
Jacobi functions [13], 𝑝 = sn 𝑡, 𝑞 = cn 𝑡, 𝑟 = dn 𝑡 is a particular solution to
a nonlinear autonomous system of differential equations

̇𝑝 = 𝑞𝑟, ̇𝑞 = −𝑝𝑟, ̇𝑟 = −𝑘2𝑝𝑞 (10)

with the initial conditions

𝑝 = 0, 𝑞 = 𝑟 = 1 at 𝑡 = 0.

This autonomous system has two quadratic integrals of motion

𝑝2 + 𝑞2 = 1 and 𝑘2𝑝2 + 𝑟2 = 1 (11)

We can solve the autonomous system (10) by rrk or idt methods that
preserve only the first or second integral. For certainly, we take 𝑘 = 1/2 and
indicated above initial condition.

sage: var('p,q,r')
sage: load('ex.sage')
sage: k=1/2
sage: s=4
sage: F=[r*q,-p*r,-k^2*p*q]
sage: list_of_integral=[p^2+q^2,k^2*p^2+r^2]
sage: ics=[p==0,q==1,r==1]
sage: idt_solve(P1=list_of_integral[0],ics=ics,F=F,dt=0.2,T=1)
sage: rrk_solve(P1=list_of_integral[0],ics=ics,F=F,dt=0.2,T=1)
sage:

B1=rrk_solve(P1=list_of_integral[0],ics=ics,F=F,dt=0.1,T=40)↪

sage:

B2=rrk_solve(P1=list_of_integral[1],ics=ics,F=F,dt=0.1,T=40)↪
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sage: G=line([[t,p] for [t,p,q,r] in

B1],color='red',axes_labels=['t','p'])+point([[t,p] for
[t,p,q,r] in B2],frame=true)

↪

↪

sage: max(abs(k^2*p^2+r^2-1) for [t,p,q,r] in B2 )
sage: max(abs(p^2+q^2-1) for [t,p,q,r] in B2)
sage: max(abs(k^2*p^2+r^2-1) for [t,p,q,r] in B1 )
sage: max(abs(p^2+q^2-1) for [t,p,q,r] in B1)
sage: G1=line([[t,k^2*p^2+r^2-1] for [t,p,q,r] in

B1],axes_labels=['$t$','$k^2p^2+r^2-
1$'],tick_formatter=[None,RR(10e-
18).n(digits=1)],frame=true)

↪

↪

↪

sage: G2=line([[t,p^2+q^2-1] for [t,p,q,r] in

B2],axes_labels=['$t$','$p^2+q^2-
1$'],tick_formatter=[None,RR(10e-
18).n(digits=1)],frame=true)

↪

↪

↪

In figure 1 we can see a graph of the solution found by rrk method with
exact conservation of 𝑝2 +𝑞2 = 1. Rrk give a condensation of the greed points
in those arches of the graph where the curvature has a maximum.

0 5 10 15 20 25 30 35 40
t

-1

-0.5

0

0.5

1

p

Figure 1. Graph of 𝑝(𝑡), rrk, 𝑑𝑡 = 0.1

The second integral 𝑘2𝑝2 + 𝑟2 − 1 is not exactly preserved, but its value
fluctuates with a small amplitude of 10−7 (figure 2). We also use rrk with
exact conservation of 𝑘2𝑝2 + 𝑟2 = 1. In this case first integral grows by
leaps bounds and quickly becomes larger than 10−3 (figure 3). Thus, the
preservation of one integral does not preserve others.

Let’s compare the Buono method with the standard rk4 at the same step
size 𝑑𝑡 (which denote Δ𝑡 in the rrk method).
sage: var('p,q,r,t')
sage: QRK=desolve_system_rk4(F,[p,q,r], ics=[0,0,1,1,], ivar=t,

end_points=20)↪
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sage: G3=line([[t,p^2+q^2] for [t,p,q,r] in

B2],color='red')+point([[t,p^2+q^2] for [t,p,q,r] in
QRK],axes_labels=['$t$','$p^2+q^2$'], tick_formatter=[None,
RR(10e-18).n(digits=1)],frame=true)

↪

↪

↪

sage: G4=line([[t,k^2*p^2+r^2-1] for [t,p,q,r] in
B1],axes_labels=['$t$','$k^2p^2+r^2-1$'],tick_formatter=[None,

RR(10e-18).n(digits=1)], color='red') +
point([[t,k^2*p^2+r^2-1] for [t,p,q,r] in QRK],frame=true)

↪

↪

0 5 10 15 20 25 30 35 40
t

−3.5× 10−7

−3.0× 10−7

−2.5× 10−7

−2.0× 10−7

−1.5× 10−7

−1.0× 10−7

−5.0× 10−8

0.00

5.0× 10−8

k
2
p

2
+
r

2
−

1

Figure 2. Second invariant for rrk method with exact conservation of first invariant

𝑝2 + 𝑞2 = 1

0 5 10 15 20 25 30 35 40
t

0.00

0.00020

0.00040

0.00060

0.00080

0.00099

p
2
+
q

2
−

1

Figure 3. First integral for rrk with exact conservation of 𝑘2𝑝2 + 𝑟2 = 1

The rrk method with the exact conservation of the first invariant 𝑝2 +𝑞2 = 1
preserves both integrals better than rk4 (figure 5) but the rrk with the exact

conservation of 𝑘2𝑝2 + 𝑟2 = 1 preserves the first integral worse than rk4
(figure 4).
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0 5 10 15 20 25 30 35 40
t
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1.0

1.0

1.0

p
2
+
q

2

Figure 4. First invariant for rrk method with exact conservation of second invariant

𝑘2𝑝2 + 𝑟2 = 1 (red) and for standard rk4

0 5 10 15 20 25 30 35 40
t
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−3.0× 10−7
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p

2
+
r

2
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Figure 5. Second invariant for rrk method with exact conservation of first invariant

𝑝2 + 𝑞2 = 1 (red) and for standard rk4 (blue)

From the numerical experiments, we came to the conclusion that preserving
multiple integrals requires a different approach.
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3. The Calvo method for one invariant

3.1. The Calvo method

Let us take two popular explicit RK methods for examples: the RK4 and
Euler methods. RK4 method has 4 stages and 4th approximation order. We
calculate four axillary quantities at 𝑛th step

𝑘1=𝑥𝑛,

𝑘2=𝑥𝑛 + 1
2𝑓(𝑘1)Δ𝑡,

𝑘3=𝑥𝑛 + 1
2𝑓(𝑘2)Δ𝑡,

𝑘4=𝑥𝑛 + 𝑓(𝑘3)Δ𝑡
and then the quantity

𝜙(𝑥𝑛) = 𝑥𝑛 + Δ𝑡 (1
6

𝑓(𝑘1) + 1
3

𝑓(𝑘2) + 1
3

𝑓(𝑘3) + 1
6

𝑓(𝑘4)) (12)

which is used in standard way as 𝑥𝑛+1. Similarly, by the Euler method, we
calculate in the step 𝑛 one axillary quantity 𝑘1 = 𝑥𝑛 and the quantity

𝜙1(𝑥𝑛) = 𝑥𝑛 + 𝑓(𝑘1)Δ𝑡 (13)

which is used in standard way as 𝑥𝑛+1. We can describe this scheme by
Butcher table with additional row:

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0
𝜙 1

6
1
3

1
3

1
6

𝜙1 1 0 0 0

Calvo et al. [11] extend the Buono method by coupling these two schemes:
in the step 𝑛 we take

𝑥𝑛+1
𝜆 = 𝜙(𝑥𝑛) − 𝜆𝑛(𝜙(𝑥𝑛) − 𝜙1(𝑥𝑛)), (14)

where 𝜆𝑛 ∈ ℝ is the scalar parameter that can be determined by the conser-
vation law, i.e.

𝐼(𝑥𝑛+1
𝜆 ) = 𝐼(𝑥𝑛). (15)

Using (12) and (13) we have

𝑥𝑛+1
𝜆 = 𝑥𝑛 + (1

6
− 5

6
𝜆𝑛) 𝑓(𝑘1)Δ𝑡 + (1

3
+ 1

3
𝜆𝑛) 𝑓(𝑘2)Δ𝑡+

+ (1
3

+ 1
3

𝜆𝑛) 𝑓(𝑘3)Δ𝑡 + (1
6

+ 1
6

𝜆𝑛) 𝑓(𝑘4)Δ𝑡. (16)
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Thus, (15) gives an algebraic equation to determinating the parameter 𝜆𝑛
at each step. Calvo et al [11] proved that approximation order of this new
scheme is equal to 3. They investigated more general case when coupling any
two explicit RK scheme.
If 𝐼 is a quadratic invariant then we have a quadratic equation for 𝜆𝑛,

one of the roots of which goes to 0 at Δ𝑡 → 0 and the other goes to ∞. In
numerical experiments we choose the parameter 𝜆𝑛 as real number which is
close to the value 0. In CAS sagemath, we use symbolic calculation to solve
this equation (15) with respect to 𝜆𝑛, and use the function roots to get this
value, since our calculation is performed in the ring ℝ (Real Field with 53 bits
of precision). So, there is a small error, since in ℚ will get the exact value,
but it is very time-consuming.

3.2. Elliptic function test

We implement the described scheme in Sage as the function project_1().

Function project_1() returns the numerical points (0, 𝑥0), (Δ𝑡, 𝑥1), ⋯ with
the parameters:

— list_of_integral is an invariant required to be conserved;
— F is the right sides of the system (1)
— ics is the initial condition
— 𝑑𝑡 is the step size,𝑇 is the end point of time 𝑡.
Let us take the elliptic function for example.

sage: load('ex.sage')
sage: var('p,q,r,k')
sage: k=1/2
sage: list_of_integral=[p^2+q^2,k^2*p^2+r^2]
sage: F=[r*q,-p*r,-k^2*p*q]
sage: ics=[p==0,q==1,r==1]
sage: B1=project_1(list_of_integral[0],F,ics,dt=0.1,T=20)
sage: max([abs(p^2+q^2-1) for [t,p,q,r] in B1])
sage: P=line([[t,p] for [t,p,q,r] in

B1],axes_labels=['$t$','$p$'],tick_formatter=[None,RR(10e-
15).n(digits=1)],frame=true, color='red')+point([[t,p] for
[t,p,q,r] in B1])

↪

↪

↪

sage: P1=line([[t,p^2+q^2-1] for [t,p,q,r] in

B1],axes_labels=['$t$','$p^2+q^2-
1$'],tick_formatter=[None,RR(10e-
15).n(digits=1)],frame=true,
color='red')

↪

↪

↪

↪

sage: P2=line([[t,k^2*p^2+r^2-1] for [t,p,q,r] in

B1],axes_labels=['$t$','$k^2*p^2+r^2-
1$'],tick_formatter=[None,RR(10e-
15).n(digits=1)],frame=true)

↪

↪

↪

sage: B2=project_1(list_of_integral[1],F,ics,dt=0.1,T=20)
sage: max([abs(p^2+q^2-1) for [t,p,q,r] in B2])
sage: P0=line([[t,p] for [t,p,q,r] in

B2],axes_labels=['$t$','$p$'],tick_formatter=[None,RR(10e-
15).n(digits=1)],frame=true, color='red')+point([[t,p] for
[t,p,q,r] in B2])

↪

↪

↪
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sage: P01=line([[t,p^2+q^2-1] for [t,p,q,r] in

B2],axes_labels=['$t$','$p^2+q^2-
1$'],tick_formatter=[None,RR(10e-
15).n(digits=1)],frame=true)

↪

↪

↪

sage: P02=line([[t,k^2*p^2+r^2-1] for [t,p,q,r] in

B2],axes_labels=['$t$','$k^2*p^2+r^2-
1$'],tick_formatter=[None,RR(10e-
16).n(digits=1)],frame=true)

↪

↪

↪

In figure 6 we can see that the solution founded by the Calvo method with
exact conservation of the first invariant 𝑝2 + 𝑞2 = 1 and the second invariant
𝑘2𝑝2 + 𝑟2 = 1 gives a condensation of greed points in those arches of the
graph where the curvature has a maximum.
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Figure 6. Graph of 𝑝(𝑡), for the Calvo method with exact conservation of 𝑝2 + 𝑞2 = 1,
𝑑𝑡 = 0.1(up one) and that of 𝑘2𝑝2 + 𝑟2 = 1 (down one)
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The second integral 𝑘2𝑝2 + 𝑟2 = 1 in not be exactly preserved, but its value
fluctuates with a small amplitude 10−7 (figure 7) by the Calvo method with
exact conservation of the first invariant 𝑝2 + 𝑞2 = 1. The Calvo method with
exact conservation of the second invariant 𝑘2𝑝2 + 𝑟2 = 1 shows that the first
invariant 𝑝2 + 𝑞2 = 1 grows with an error of no more than 10−5 (figure 8).
Thus, preserving one integral does not preserve the other.
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Figure 7. First and second integrals for the Calvo method with exact conservation of

𝑝2 + 𝑞2 = 1
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Figure 8. First and second integrals for the Calvo method with exact conservation of

𝑘2𝑝2 + 𝑟2 = 1

4. Scheme for preserving two invariants

Theoretically, the Calvo method allows to construct schemes that preserve
several invariants. We take two pairs of RK methods defined by the following
two extended Butcher tables:

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0
𝜙 1

6
1
3

1
3

1
6

𝜙1 1 0 0 0

and

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
0 1 0 1 0
𝜙 1

6
1
3

1
3

1
6

𝜙2 0 1 0 0
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The first embedded RK method corresponding to the first table is con-
structed by combining the standard RK4 method, which has order 4, with
the Euler method, which has order 1. The second embedded RK method cor-
responding to second table is constructed by combining the standard RK4
method, which has order 4, with a second order explicit RK scheme.
We are trying to find an explicit RK scheme of the type:

𝑥𝑛+1
𝛼𝛽 = 𝜙(𝑥𝑛) − 𝛼𝑛(𝜙(𝑥𝑛) − 𝜙1(𝑥𝑛)) − 𝛽𝑛(𝜙(𝑥𝑛) − 𝜙2(𝑥𝑛)), (17)

where 𝛼𝑛, 𝛽𝑛 ∈ ℝ are two scalar parameters, which can be determined by
using the conservation laws, i.e.

𝐼𝑖(𝑥𝑛+1
𝛼𝛽 ) = 𝐼𝑖(𝑥𝑛), 𝑖 = 1, 2, (18)

where 𝐼1 and 𝐼2 are two invariants of system (1).

By definition, we have

𝜙(𝑥𝑛) − 𝜙1(𝑥𝑛) = (−5
6

𝑓(𝑘1) + 1
3

𝑓(𝑘2) + 1
3

𝑓(𝑘3) + 1
6

𝑓(𝑘4)) Δ𝑡

and

𝜙(𝑥𝑛) − 𝜙2(𝑥𝑛) = (1
6

𝑘1 − 2
3

𝑘2 + 1
3

𝑘3 + 1
6

𝑘4) Δ𝑡.

Thus, (18) gives us a system of two equations with respect to two unknowns
𝛼𝑛 and 𝛽𝑛. In numerical experiment, we choose the parameters 𝛼𝑛, 𝛽𝑛 as
real numbers close to the value 0.
In this way we have a system of algebraic equations for calculating pa-

rameters and we must solve this system at each step. Thus, we lose the
main advantage of the exact methods. Sage has numerous tools for apply-
ing operations on the field of ideals. In our numerical experiments we use
the elimination technique based on Gröbner basis [14] to solve (18). Namely,
in each step 𝑛, after constructing multivariate polynomial ideal in variables
𝛼𝑛, 𝛽𝑛 generated by (18), we use Sage built-in function elimination_ideal
to obtain an univariate equation in variable 𝛽𝑛. The function roots over ring
ℝ is used to solve this equation. Substituting one of the value of 𝛽𝑛 which
is close to 0 to (18), the value of another parameter 𝛼𝑛 can be obtained by
using the function roots again.

Consider elliptic function test.

We construct the function phi_solve_1() to implement the routine de-
scribed above.

We implement the described scheme in Sage as the function phi_solve_1().

Function phi_solve_1() returns the numerical points (0, 𝑥0), (Δ𝑡, 𝑥1), ⋯ with
the parameters:

— list_of_integral is two invariants that are required to be conserved;
— F is the right sides of the system (1);
— ics is the initial condition;
— 𝑑𝑡 is the step size,𝑇 is the end point of time 𝑡.
Let us take the elliptic function as example.
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sage: var('p,q,r,t')
sage: k=1/2
sage: s=4
sage: F=[r*q,-p*r,-k^2*p*q]
sage: list_of_integral=[p^2+q^2,k^2*p^2+r^2]
sage: ics=[p==0,q==1,r==1]
sage: L=phi_solve_1(list_of_integral=list_of_integral, F=F,

ics=ics, dt=0.1, T=20)↪

sage: max([abs(k^2*p^2+r^2-1) for [t,p,q,r] in L])
sage: G4=line([[t,k^2*p^2+r^2-1] for [t,p,q,r] in

L],axes_labels=['$t$','$k^2*p^2+r^2-
1$'],tick_formatter=[None,RR(10e-
20).n(digits=1)],frame=true)

↪

↪

↪

sage: max([abs(p^2+q^2-1) for [t,p,q,r] in L])
sage: G5=line([[t,p^2+q^2-1] for [t,p,q,r] in

L],axes_labels=['$t$','$p^2+q^2-
1$'],tick_formatter=[None,RR(10e-
20).n(digits=1)],frame=true)

↪

↪

↪

The Calvo method allows to preserve both invariants and thus significantly
surpasses the other methods presented in the previous sections. Figure 9
shows that the error 𝑘2𝑝2 + 𝑟2 − 1 remains constant in size at 10−16, while
figure 10 shows the error 𝑝2 + 𝑞2 − 1 remains constant in size at 10−13. We
can say that these errors are due to the implementation of the calculation in

solving equation (18) over the ring ℝ instead of the algebraic closed field ℚ in
CAS Sage [15]. From this point of view, we can conclude that this method
can be considered as a method that exactly preserves exactly both quadratic
invariants in the elliptic function test.
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Figure 9. The first integral 𝑘2𝑝2 + 𝑟2 − 1 for 𝑇 = 20, 𝑑𝑡 = 0.1
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Figure 10. The second integral 𝑝2 + 𝑞2 − 1 for 𝑇 = 20, 𝑑𝑡 = 0.1

5. Conclusion

We have investigated several implementation of explicit RK schemes that
preserve invariants. To preserve one invariant the Buono and Calvo methods
require solving one algebraic equation with one unknown at each step. In
our example, this equation is quadratic, so we can find its numerical solution
without any difficulties. From the numerical experiments, we concluded that
the exact conservation of one invariant is not an obstacle for changing of
the other invariants. Thus, the conservation of multiple integrals requires
a different approach.
The Calvo method which preserves several invariants has a drawback: it

requires solving a system of algebraic equations with several unknown variables
at each step, i.e. has the same drawback as standard implicit RK methods
have. Fortunately, in our tests the system we obtained is much simpler than
the system described by the midpoint scheme.
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О реализации явных схем Рунге–Кутты
с сохранением квадратичных инвариантов

динамических систем

Юй Ин1, М. Д. Малых2

1 Университет Кайли
Кайли, 556011, Китай

2 Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Авторами реализовано несколько явных схем Рунге–Кутты, которые сохраня-
ют квадратичные инварианты автономных динамических систем в Sage. В статье
представлен пакет ex.sage и результаты численных экспериментов.
В пакете функции rrk_solve, idt_solve и project_1 построены для случая, когда

только один заданный квадратичный инвариант будет сохранён точно. Функция
phi_solve_1 позволяет сохранить одновременно два указанных квадратичных
инварианта. Для решения уравнений относительно параметров, определяемых
законом сохранения, использована методика исключения на основе базисов Грёб-
нера, реализованная в Sage. В качестве тестового примера представленного
пакета используется эллиптический осциллятор. Эта динамическая система
имеет два квадратичных инварианта. Представлены численные результаты срав-
нения стандартного явного метода Рунге–Кутты RK(4,4) с rrk_solve. Кроме
того, для функций rrk_solve и idt_solve, сохраняющих только один инвари-
ант, исследовано изменение второго квадратичного инварианта эллиптического
осциллятора. В заключение рассматриваются недостатки использования этих
схем.

Ключевые слова: явный метод Рунге–Кутты, квадратичный инвариант, дина-
мическая система, Sage




