АНАЛИЗ ВЛИЯНИЯ ПРОЦЕССА РЕГИСТРАЦИИ ПОЛЬЗОВАТЕЛЕЙ В ПОДСИСТЕМЕ IMS НА ВРЕМЯ УСТАНОВЛЕНИЯ СОЕДИНЕНИЯ

Абаев П.О., Сучилова М.А.

Российский университет дружбы народов, pabaev@sci.pfu.edu.ru, mariya_suchilova@mail.ru

В докладе исследуется процесс регистрации пользователей и процесс установления соединения в подсистеме IMS. Построена модель в виде неоднородной ВСМР-сети.

Ключевые слова: IMS, BCMP-сеть, время установления соединения, процесс регистрации.

Ввеление

Создание концепции IMS — это основополагающая ступень на пути к созданию сети связи нового поколения. Подсистема IMS предоставляет пользователям широкий набор услуг с гибкими возможностями по управлению, персонализации и созданию новых наборов услуг. Возрастающий интерес к IMS приводит к увеличению нагрузки на сеть, как следствие, увеличивается и время задержки пакетов, что в итоге влияет на качество обслуживания. В связи с этим актуальной является задача анализа эффективности существующих принципов обмена сообщениями между узлами в IMS. В работе исследуется процесс предоставления услуги регистрации и процесс установления соединения и взаимное влияние друг на друга.

Математическая модель процесса установления соединения

Рассмотрим структуру сети подсистемы IMS, которая состоит из пользовательского оборудования (UE, UE), элементов с функциями управления вызовами и сеансами (Call Session Control Function: I-CSCF, P-CSCF, S-CSCF) и сервера домашних абонентов (Home Subscriber Server, HSS) [1]. Применяя подход из [3] к диаграмме установления соединения и регистрации пользователей в сети, получим, что случайная величина (СВ)

 Δ времени установления соединения рассчитывается по формуле $\Delta = \sum_{i=1}^{n} h_i \Delta_i$, где h_i количество сообщений, которые проходят через i -узел сети, Δ_i — СВ времени, за которое проходит сообщение через i -узел сети. Пусть $V = M \, \Delta$ - среднее время, за которое происходит установление сессии, $v_i = M \, \Delta_i$ — среднее время, за которое проходит сообщение через i -узел сети. Среднее время установления соединения V_1 от сети абонента A (Узел 1) к сети абонента B (Узел 8) рассчитывается по формуле $V_1 = 5v_1 + 9v_2 + 9v_3 + 3v_4 + v_5 + 9v_6 + 9v_7 + 4v_8$; а среднее время регистрации пользователя в сети по формуле $V_2 = v_1 + 2v_2 + 3v_3 + 2v_4 + 2v_5$.

Схему функционирования системы представим в виде открытой сети массового обслуживания (СеМО), которая состоит из узлов 2-ух типов $\mathcal{M}=\mathcal{M}_{IS}$ U \mathcal{M}_{FCFS} , $|\mathcal{M}|=M$, а именно: множество $M_{FCFS}=\left\{2,3,4,5,6,7\right\}$ с дисциплиной FCFS и множество $M_{IS}=\left\{1,8\right\}$ с дисциплиной IS. На рис. 1 представлена циркуляция части сообщений, участвующих в процессе установления соединения [2].

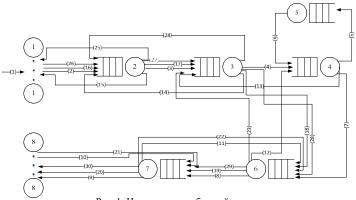


Рис. 1. Циркуляция сообщений в сети

Таблица 1. Соответствие типа сообщений классу заявки

Класс заявки	Сообщение
$r_1 \in \{2, 3, 4, 7, 8, 9\}$	INVITE
$r_2 \in \{5\}$	LIR
$r_3 \in \{6\}$	LIA
$r_4 \in \{53, 54, 55, 56, 57, 58\}$	100 TRYING
$r_5 \in \{10,11,12,13,14,15\}$	183 Session in Progress
$r_6 \in \{16,17,18,19,20,36,37,38,39,40\}$	PRACK
$r_7 \in \{21, 22, 23, 24, 25, 61, 62, 63, 64, 65, 75, 76, 77\}$	200 OK
$r_8 \in \{26, 27, 28, 29, 30\}$	UPDATE
$r_9 \in \{31, 32, 33, 34, 35\}$	RINGING
$r_{10} \in \{41, 42, 43, 44, 45\}$	200 OK IN INVITE
$r_{11} \in \{46, 47, 48, 49, 50\}$	ACK
$r_{12} \in \{68, 69, 72\}$	REGISTER
$r_{13} \in \{70\}$	User Authorization Request
$r_{14} \in \{71\}$	User Authorization Answer
$r_{15} \in \{73\}$	Server Assignment Request
$r_{16} \in \{74\}$	Server Assignment Answer

В таблице 1 представлено соответствие типа сообщения отдельному классу для сети, в которой циркулируют сообщения, участвующие в процессе установления соединения

и в процессе регистрации. Назовем (i,r) -заявкой заявку, которая находится на обслуживании в i-узле и принадлежит при этом классу r. Множество $\mathcal{L}' = \left\{ (i,r) : i \in \mathcal{M}, r \in \mathcal{R} \right\}$ назовем множеством всех допустимых типов заявок. Маршрутизация сообщений в сети описывается стохастической матрицей $\mathbf{\Theta} \doteq (\theta_{ir,\ js})$, $i,\ j \in \mathcal{M}$, $r,\ s \in \mathcal{R}$. Для описания выхода заявок из сети введем дополнительный узел с номером 9, как только заявка перейдёт в этот узел она поменяет класс на $r_0 \in \left\{ 0,1,51,52,59,60,66,67,78 \right\}$. Тогда $\mathcal{L}'' = \left\{ \left(9,0 \right) \right\}$ - дополнительное множество заявок. Маршрутизацию заявок между множеством $\mathcal{L} = \mathcal{L}' \cup \mathcal{L}''$ характеризует расширенная стохастическая матрица Θ .

В предположении, что поступающий поток заявок пуассоновский, обслуживание в узлах сети экспоненциальное и выполняется условие равновесного режима функционирования сети, построенная сеть является сетью ВСМР, и дальнейший анализ может быть проведен по теореме ВСМР. Если обслуживание в узлах сети неэкспоненциальная, то построенная модель относится к классу неэкпоненциальных сетей, и дальнейший анализ возможно провести с помощью метода вторых моментов, в предположении, что сеть однородная.

Заключение

В работе исследуются вероятностно-временные характеристики процесса установления соединения и регистрации пользователей в подсистеме IMS. Построена и исследована модель в виде неоднородной экспоненциальной ВСМР-сети, а в случае детерминированного обслуживания в виде однородной неэкпоненциальной сети массового обслуживания. Получен алгоритм для оценки среднего времени установления соединения и регистрации пользователей в сети.

Литература

- 1. Гольдитейн Б. С., Соколов Н.А., Яновский Г.Г. Сети связи.- СПб.: БХВ- Петербург, 2010.
- 2. 3GPP: Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); LTE; IP Multimedia Subsystem (IMS); Stage 2; TS 23.228 version 11.6.0 Release 11. 2012
- 3. Abaev P.O. On SIP Session Setup Delay Modeling in Next Generation Networks // International Congress on Ultra Modern Telecommunications and Control System (ICUMT). -2010. –P. 1125-1131.

ANALYSIS OF INFLUENCE OF USER REGISTRATION PROCESS ON SESSION SETUP DELAY IN IMS

Abaev P.O., Suchilova M.A.

Peoples' Friendship University of Russia, pabaev@sci.pfu.edu.ru, mariya suchilova@mail.ru

The influence of registration process on session setup delay is studied. Heterogeneous model of queuing network is constructed and analyzed.

Key words: IMS, BCMP network, session setup delay, registration process.