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In this work an estimate of the relativistic phase shift of space body satellite rotation
observed from a remote planet is compared with the classical perturbation of the satellite orbit
by other space bodies. The calculations are exemplified by Jupiter’s satellites. A satellite of
the Amalthea group interacting with the Galilean satellites is chosen. The interaction of this
satellite with the rest of its group is negligible as compared to that with external satellites,
since the mass of any internal satellite is much less than that of external ones.

A gravitational interaction of Jupiter’s satellite system has been considered within the
weak-interaction approximation for inner satellites neglecting Galilean satellites’ action on
the phase. Jupiter’s system is chosen since it has many satellites whose mutual interaction
is rather strong due to small distances between them and their large mass, besides Jupiter is
rather close to us, so it is possible to observe directly its satellites in a telescope and to check
data empirically.

A gravitational deviation of the chosen inner satellite is calculated to match against the
value obtained from the relativistic phase shift formula. The relativistic shift between real
and observable phases is given by a formula obtained by A.P. Yefremov in the framework
of Quaternion theory. The formula for correction to the phase is a relativistic effect of
time delay. The classical correction is estimated using celestial mechanics. An effect of the
Galilean satellites on the inner satellites is considered. The phase correction is compared
with the value predicted by Quaternion theory of relativity.

In conclusion applicability of this formula has been discussed.
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1. Introduction

There exists a problem of determining space body coordinates due to a plethora of
effects on the measurement process. They are: light ray deflection by gravity sources,
time delay of the objects moving relative to the observer etc. Thus, it is important to
estimate a relative contribution of each effect to the overall picture of measurements
and to separate some effects from the others.

This work is devoted to estimation of the relativistic effect illustrated by Jupiter’s
satellites. Relativistic formula obtained by A.P. Yefremov [1].

Section 2 includes description of the algebra of quaternions and biquaternions and
the main notions of General relativity in terms of hypercomplex number algebra. In
section 3 a formula for estimating the phase shift is derived. in Section 4 the action of
the gravitational field of the Galilean satellites on a chosen inner satellite is calculated,
and the values obtained are compared with the corrections due to a relativistic phase
shift. In Section 5 the main consequences of the results obtained are briefly discussed.

2. Quaternions and Fundamentals of Quaternion Special
Relativity

Now we shall discuss in detail the fundamentals of the theory to find the final
formula for the relativistic shift. The quaternion calculation is based on four units,
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one is a scalar and three are vectors qi1, qz, qs, satisfying the multiplication rules [2]:
lak = qxl = qx; Qi = —0x; + Ex1iq;- (1)
The vector units are imaginary (q2 = —1) and related to each other as follows:

q3 = 9192 = —q291-

A linear combination of the vector units with the real unit gives a quaternion
number. All quaternions are commutative and associative with respect to addition
and associative but not commutative with respect to multiplication. Hamilton also
noticed that the three imaginary units may be regarded as forming a vector of the
Cartesian coordinate system.

The rule of multiplication of the quaternion units is form-invariant under the trans-
formations of vector units reads:

aw =UaU ™", aw = Oxian (2)

with a full set of the operators U and O of groups SL(2,C) and SO(3,C) respec-
tively, which are isomorphic to the Lorentz group in relativity theory. The transfor-
mations (2) give a new set of vectors qi satisfying the rule (1), but become a function
of the transformation parameter, whereas the real unit remains invariable.
If the quaternion parameters are complex numbers, such an object is called a
biquaternion:
s = (ax + iby)qx = a + b, (3)

where a and b are real. The vectors a and b are orthogonal regardless of the coordinate
choice . ) /
akbk = anOnkmemk = 5mnanbm =0.

The vector b is aligned with the vector qi, whereas the vector a is orthogonal to
them and aligned with qa

S = iblql + a2q2. (4)

This form of representing the BQ number is convenient for considering the physical
problems related to relativistic motions.

In Einstein’s theory of relativity the interval is given by the formula: dss = dto—drs
In BQ terms the interval can be written in the form

ds = (ierdt + dzk)qx, (5)

where the displacement of an observable object dx; is orthogonal to the unit vector
ek, showing a direction of time change dt: exdz, = 0.
Let the Y’ system be obtained from 3 by rotation around the axis qz by the angle
1Y
chp i-shy 0

> =0¥s, O¥=|-i-shy chy 0]. (6)

0 0 1
Physically, this is an ordinary boost, obviously keeping the BQ vector form-invariant
and also giving the coordinate transformation as follows dt’ = dtch + drsha,

dr’ = dtsh + drch, resulting in the effects of length reduction and time dila-
tion. If the body is at rest in some reference frame, its velocity will be equal to
V = dr/dt = tht in another one.

3. Phase Shift Formula

Now consider a satellite of the planet being observed from the Earth. Let & =
(di,q3,q3) be a fixed coordinate system associated with the Sun, the vectors q3,q3
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form an ecliptic plane, and ¥ = (q1,q2,q3) be also a fixed system, connected with
the Earth, whose basis vectors are parallel to 2. Let the Earth ¥ and the observable
planet Y orbit in circles with radii Rg and Rp, and constant linear velocities Vg and
Vp. The angular frequency of each rotation is given by the formula Q = V/R, o = Qpt
and 8 = (1pt are the angles between g5 and the direction to the Earth and the planet
respectively. All values are measured by the observer on Earth. The coordinates of
the planet for the observer:

T = RpcosfS — Rgcosa, (7a)
r3 = Rpsin 8 — Rgsina. (7b)

The system Y/ is related to ¥ by the formula ¥’ = O;wE, and the relative velocity
¥/ — ¥, is obtained using (7),

dzy\?  [das)?
v (B2 (B) v v ot -

defines a hyperbolic parameter ¥ < 1. The corresponding BQ vector has the form:

dxg de’g
ds = dt'py, = dt g+ =2
S p1 <p1+ 1 q2 + 1 Q3>,

giving the correlation time ¥’ — Y, dt = d¢’ ch+). The observable frequency is less than

the real one:
27 27 w’
w=— = = .
T T'ch¥ chw
Hence, expressing a difference between the observable and theoretical values, it is
possible to find:

VE+VE
T @ t (8)
where ¢, is the observed phase, ¢, the real phase, Vg is the observer velocity , Vp the

observed system velocity, w’ is the angular velocity of rotation in the observed system,
t the observation time.

Ap=pr —@p —

4. Estimation of Phase Perturbations

Now consider the system of Jupiter’s satellites, i.e. Amalthea’s and Galilean
groups. The Amalthea group satellites are closest to Jupiter. They move faster
than the Galilean satellites having smaller masses, so that the relativistic effects are
more significant for them, and their interaction with one another is negligible as com-
pared to the Galilean ones. Therefore, one satellite of the given group is chosen for
consideration.

Thus, the system consists of Jupiter, one observed satellite of Amalthea’s group
and four Galilean ones. The eccentricities of all satellites and deviations from the
ecliptic plane are small, hence we consider a flat circular motion. The consideration is
aimed at finding a deviation of the motion phase due to gravitational interaction with
the four others and comparing the result obtained with the relativistic correction.

Designate Jupiter’s mass and that of the satellite under consideration as My and
m respectively, the masses of the Galilean satellites as M; where the number of the
latter ¢ varies from one to four. Designate the radii of orbits and the phase of an
internal satellite and the Galilean ones as r, ¢, R;, ®; respectively.

First write down the Lagrange function of the system in polar coordinates as
follows:
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; i GM
Lir, R R, 0,4, @, &) = T(72 +1%9%) + ===+
T
4 4
2 2 zj :
+Z (2 4 R2D +Z 5 +2;§]j b +;

where

D; = \/R? 472 — 2R;r cos(|®; — ).

Dij = \/Rf + Rg2 — QRZR] COS(|(I)i — (I)]D

are the distances between the chosen satellite and the Galilean one, and between the
Galilean satellite in pairs respectively.

The first two terms are the Lagrange function of the satellite in the zero approxi-
mation, they are its kinetic and minus potential energy relative to Jupiter respectively;
the next two terms is the same for the Galilean satellites, the next term is an inter-
action between the Galilean satellites, and the last term is an interaction between
internal and external satellites.

Then, substituting this Lagrange function into the Lagrange equations [3]:

doL oL
dtdo4; Oq;
(where g — generalized coordinate) and assuming orbits to be circular, after some

transformations we obtain the system:

1 GMR .
Z sin(|®; — ),

) GMJ_iGM

ret =3 g (Bicos(|®; —ol) =),
i=1 ?
4

. Gmr . G M;R;
Q; = RS sin(|®; — ¢l) — ﬁz 5‘3‘3 sin(|®; — @),

144 1]21 1j

GMJ Gm
R®? = e (rcos(|®; — ¢|) — R +GZ (R; — R, sin(|®; — ®,])).

i u]

We have obtained a system of second-order differential equations of five variables.
Naturally, the solution in a general form is very cumbersome. Hence we recourse to
the following method. Take the same system, but only for two satellites, calculate
deviations for each Galilean satellite separately and then sum up deviations. For
this purpose, in each sum only one index i should be retained, other satellites are
considered infinitely remote. The summation index is omitted. The system takes the
form:

b= sin(le — o) (90)
rg? = T Reos(@ — ¢) ), (90)
b = - S sin|@; — o), (%)
Re? = ST O cos((@ — ) — R). (9d)

R2
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If one considers equations (9b) and (9d), neglecting interaction between the Galilean
satellites and assuming that ¢ = w = 27/T, it is possible to obtain Kepler’s third law:

¥ R GMY

2 T2 Agx2

where ¢t and T are the orbital periods of the internal and external satellite respectively.
Subtracting equation (9a) from (9c), we obtain:

= const,

- . GMR . Gmr | G .
bimo= D3r sin(| = l) - RD3 sin(|®; — ) D3 sin(® - ¢l) <r R

Since M > m and R > r, the second term may be neglected. Introducing the
substitution ® — ¢ = x, we obtain the equation:

i GMR
-~ rD3

sin(x),

Integrating it, we have:

2GM
o . (10)
r2\/R? + 12 — 2R;7 cos(|®; — ¢|)

Clarify the meaning of a constant C'. When phases of motion coincide, the second
satellite does not act on the first one, and we have the first approach. Now return to
the old variables & = ® — ¢ = 5 — wo and write down the frequencies following the
classical gravity theory as

GM: GM:
w(2]: 7‘3], (2): jo' (11)

Substituting it in (10), we obtain

2
([ Jey; G, 2GM
¢= (\/ R3 r3 ) +r2(R77")'

Substituting it in (10), expressing frequencies from (11) and taking into account
that the angular frequency of an internal satellite much exceeds that of an external
one, we obtain:

2GM 2GM
r2(R—7r)  r2\/RZ+ 12— 2R;rcos (|®; — o)

wo -

Aw:Q—w:\/wg—l—

Expanding the root in series, after some transformations we obtain the formula
for correcting the rotation phase of an internal satellite for attraction to one of the
external satellites:

G 1 1
Aw:M\/i - ) 12
rM; (R—r \/R§+r2—2RiTCOS(|<Di—<PD> "

Consider some extreme cases of the function (12). As an internal satellite Methis
of the Amalthea’s group is chosen, and Io as an external one.
1. p—p=0, Aw=0;
2. 9 —p=n/2, Aw=1.6-10"7 rad/sec;
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3. D —p=m Aw=23-10"Y rad/sec.

The plot of the dependence Aw on the phase difference ® — ¢ built in Maple’s
system is shown on Fig. 1, where the phase difference in radians is given along the
horizontal axis, and the phase shift — in inverse centimetres along the vertical one.

-
[ou}
=N
m
L}
=

rad

Figure 1. Dependence of the phase shift of difference of phases

In Yefremov’s article [4] a shift of the Methis phase is obtained, which amounts to
15.77 seconds for 100 years. Conversing it in a relative angular acceleration, we obtain
2.5 - 1072 rad /sec, which is by five orders less than the classical one.

Estimate the trajectory section for which it is possible to separate a relativistic
effect from a classical one. For this purpose, we expand Aw near zero more precisely

and obtain the formula:

GM Rx?
Aw = \/(Qo —wp)? + m — (0 — wo).

Solving it, we obtain an angle for which the angular frequency variations due to a
relativistic motion are commensurable or exceed those for gravitational interaction

¢=(-23-1072,2.3.1072)

and the orbit section length satisfying the condition Al = 52.5 km.

5. Conclusion

In the present paper the action of a relativistic effect of the phase shift on the
measurement of Jupiter’s satellite has been estimated.

A brief derivation of the classical correction to the motion of the satellite Methis due
to gravitational interaction with the Galilean satellite Io is presented. The maximal
classical correction proved to more than five orders exceed the relativistic one, thus
the latter may be neglected if a high accuracy in calculating the satellite motion is
not required.

The distance at which the effect is significant is about the satellite’s diameter, too
small to be observable for Jupiter’s satellites, that is, it is possible to consider the

system of Jupiter’s satellites to be nonrelativistic.



144 Bulletin of PFUR. Series Mathematics. Information Sciences. Physics. No 3,2014. Pp. 138-144

References

1. A. P. Yefremov, Quaternion Spaces, Reference Frames and Fields, PFUR press,
Moscow, 2005, in Russian.

2. A. P. Yefremov, Quaternions: Algebra, geometry and physical theories, Hypercom-
plex Numbers in Geometry and Physics 1.

3. L. D. Landau, E. M. Lifshitz, Theoretical Physics. Part I — “Mechanics”, Nauka,
Moscow, 1988, in Russian.

4. A. P. Yefremov, Quaternion model of relativity: Solutions for non-inertial motions
and new effects, Advanced Science Letters 1.

VK 531.352, 53.01
Onenka 006J1aCT NIPUMEHNMOCTHU PEJIITUBUCTCKUX MOMNPABOK HAa
npuMepe ABUXKEHUsi BHyTPeHHuX cnyTHukoB FOnurepa

A.B. Aaucumosn

Vuebro-nayuHoili UHCMUMYym 2pasumatu, U KOCMOAO2UL
Poccutickuti ynusepcumem dpyotcbvl Hapodos
ya. Muxayxro-Maxaasa, 0. 6, Mockea, Poccusn, 117198

B nannoit pabore maércs oreHka 3 deKkTa peIATUBUCTCKOTO CABUATA (Da3bl BPAIIEHUS CITY T-
HUKA KOCMHUYECKOTO TeJjia MPU HAOJIOMEHUN C OTJAJEHHON IJIAHETHI B CPABHEHUU C KJIACCH-
YeCKUM BO3MYITIIEHHEM OPOUTHI CIYTHUKA JPYTUMU KOCMUYECKUMU TeJIaMU. Bbranciienus: Be-
JyTcst Ha npuMepe cnyTHUKOB FOnurepa. Boibupaercs: ofuH CIlyTHUK U3 TPYNIbI AMaJjbTen,
KOTOPBI B3aUMOJIEHCTBYeT cO criyTHUKaMu [auies. BsanMmoneiicTBrueM JaHHOTO CITYyTHUKA C
OCTAJILHBIMHU M3 €r0 TPYIIBI MOYKHO IIPEHEeOPEdh MO0 CPABHEHUIO C B3ANMOIECHCTBHEM C BHEII-
HUMHU CIIyTHHKAMHJ, TaK KaK MacCa BHYTPEHHUX MHOI'O MEHBIIIE.

I'paBuranmonnoe B3anMmoeiicTeue criyTHUKOB HOmuTepa paccMaTpuBaeTCsl B MPEIITOIOKE-
HOAW, ITO B3AMMOJEHCTBUE BHYTPEHHUX CIIyTHHKOB MAaJIO, & BHEIIHHE CIyTHUKHW HE BJIASIIOT
Ha n3MmeHeHne cBoux da3. Cucrema FOnmrepa BbiOpaHa M3-3a TOTO, YTO OH UMEET JOBOJIBHO
BOJIBIIYIO CUCTEMY CITYTHHUKOB, B3aUMOJEHCTBUE MEXKIy KOTOPBIMH 33 CIET MAJIOTO PACCTOSI-
HUST U OOJIBIIION MACChI JIOBOJIBHO CUJIBHOE, U cucTeMa FOmumrepa jgocrarodHo OJiM3Ka K HAM
JJIsL IPSIMBIX U3MEPEHUI U BCE JJAHHBIE IPOBEPUTH SMINPHUIECKU.

Borancisercs rpaBuTaninoHHas TOTPABKA, BEIOPAHHOTO BHYTPEHHETO CITy THUKA U CPABHIBA~
eTCs CO 3HaUeHHeM cBUra ¢hasbl, MOJIYyIEHHOrO C IOMOIIBIO POPMYJIBL JJIsI PEIATUBUCTCKOTO
caBura dasbl.

PenaruBncrckuit casur mexy peanabHOil dha3oil u HaAOIIOZAEMON Haércst HOPMYIIOi, mo-
sayqennoit A.Il. EdpemoBbiM B pa3BuBaeMoil MM KBATEDHUOHHON TEOPUUM OTHOCHUTEJIBHOCTH.
Popmysia nonpaBKu K hase o CyTU HPEJICTABISIET CO00M PeTATUBUCTCKUN 3 deKT 3ameie-
HEs BpeMeHH. Kiaccutaeckas: ompaBKa OIEHUBACTCS C TIOMOIBI0 HEOECHON MEXAHUKHU U TEO-
pun Bo3myIenuil. E€ dopmyna mosmydaercs myTéM BBIUUCICHUN Yepe3 IOJIHBIHN JIarPaHKUaH
B3amMoJieiicTBus ciyTHUKOB [Omnrepa n camoit manersl. /{1t IpoCcTOTHI OPOUTHI CIUTAIOTCST
KPYTOBBIMU U MOJIyI€HHAs CUCTEMA PACCMATPUBAETCS TOMIAPHO 1151 BLIOPAHHOI'O BHYTPEHHETO
CIIyTHHMKA C Ka’KJIbIM U3 TaJINJIeeBbIX U Jlajlee BJIHUSHHE CcKJaabiBaeTcs. [lomydennas cucrema
pelnaercsi, U MOJIydeHHas MOMPaBKa K (ha3e CPABHUBAECTCS CO 3HAUEHHEM IPEICKA3bIBAEMBIM
dbopMyII0it KBATEPHUOHHOIN TEOPUU OTHOCUTEHHOCTH.

Jenatorcst BBIBOIBI 00 06J1aCTH TPUMEHUMOCTH TOCJIETHET.

KuroueBbie ciioBa: peaaTuBuUCTCKUE 3PDEKTHI, CABUT Pa3bl, CUCTEMA CITyTHHKOB FOmm-
Tepa, AMasbresi, KBATEPHUOHHAST T€OPUSI OTHOCUTETHHOCTH, TPOBEPKA (DOPMYJILI.
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