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This paper describes the created mathematical model that allows you to explore
the dynamics of cavitation bubbles under the influence of a single negative pressure
pulse. The time dependence and coordinates of the parameters of the carrier phase,
the temperature and pressure of the vapor phase, the concentration and size of the
bubbles are determined numerically. It is concluded that the model created gives
a good agreement between the calculated and experimental data.
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1. Introduction

Cavitation in a fluid is a process in which a dynamic decrease in pressure
inside a fluid occurs at a constant temperature, as a result of which vapor
and vapor-gas bubbles increase in the fluid caused by the evaporation of fluid
into these bubbles. Bubbles (caverns) are formed in those places where the
pressure in the liquid becomes below a certain critical value [1]. In a real
fluid, it is approximately equal to the saturated vapor pressure at a given
temperature [2].

Some features of cavitation

— Cavitation is peculiar only to liquids and does not occur under normal
conditions, either in solids or in gases.
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— Cavitation results from a decrease in pressure in a liquid, which means
that it can be controlled by adjusting the pressure. If the pressure is
maintained below a certain level for a long time, cavitation occurs.

— Cavitation is associated with the disappearance of cavities and their
appearance in the liquid.

— Cavitation refers to non-stationary phenomena, since is a process of
growth and collapse of cavities.

— Cavitation can occur both in the case of a moving fluid and in the case
of a resting one.

— Cavitation can occur both in the volume of a liquid and on the solid
boundary.

2. Cavitation equation

The equation describing the dynamics of cavitation bubbles in an incom-
pressible fluid without taking into account the vapor pressure, surface tension
and viscosity of the fluid can be represented as:

RR̈ +
3

2
Ṙ2 =

1

ρ

[(
pb +

2σ

Ro

)(
Ro

R

)3k

− 2σ

R
− p0 − p(t)

]
. (1)

Here: R0 is the radius of the nucleus at t = 0; R — radius of the nucleus at
the next time instant t; ρ — density of a liquid; σ is the surface tension of the
fluid; k = 1 is the adiabatic index for steam in the bud; po is the hydrostatic
pressure in a liquid (po = pb); R̈ is the acceleration of the cavity wall; Ṙ is the
speed of movement of the cavity wall; 2σ/R0 is the Laplace pressure; R0/R is
the amplitude of oscillations of the cavity.

3. Dynamics of a cavity under the action
of single pulses of negative pressure

A single impulse is presented in the form:

p(t) = −α (t+ t1) exp

(
−t+ t1

τ

)
, (2)

where t1 is the time of appearance of the first germ of homogeneous cavitation
under the action of this pulse.
In this case
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. (3)

At t = 0, the rate of increase in pressure at the initial moment of time is

α = −dp

dt
. From the condition

dp

dt
= 0, applied to (3) we find tm = τ , pm =

ατ

e
,

where τ is the rise time of the pressure pulse up to the maximum value pm.
Let us set the maximum pressure amplitude pm so that it approaches 95% to
the thermodynamic stability [3] of the fluid (spinodal, [4]), i.e.
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pm = 0.95(pb − ps). (4)

Then from (4) it follows that

α =
1

τ
0.95e(pb − ps). (5)

Thus, the rate of pressure increase α can be calculated for a given fluid
temperature using the value of (pb − ps) for a given τ.

The time of appearance of the first nucleus t1 is found from the condition
(2), when at t = t1 the pressure is p = p1.

p1 = −αt1 · exp
(
−t1
τ

)
= −β(pb − ps). (6)

Here p1 is the pressure at which one germ appears in 1 cm3 at the moment
of time t1,

β = − p1
pb − ps

< 1. (7)

Substituting α into (6), we get

β = e · t1
τ
· exp

(
−t1
τ

)
= e · x · exp (−x) (8)

where x = t1/τ.

Thus, in the equation (3), for a given value of τ , the value of α; is calculated
by the formula (5) and the value of t1 is calculated by the formula (2) for
a given value of β (formula (8)).

To determine the time t1, it is necessary to take into account the number
of bubbles appearing per unit of time per unit volume of liquid:

dN

V · dt
= B · exp

[
− 16πσ3

3(1− ρv/ρl)2(pb − p)2

]
,

V = 1 sm3,

A =
16πσ3

3(1− ρv/ρl)2
, (9)

pb − p = αt,

dN = B · exp
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α2t2

)
dt,

N = 1 = B
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0
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α2t2

)
dt. (10)
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By calculating α and A through the formulae (9) and (10) by integrating

respectively and assuming that B ≈ 1033 cm−3s−1 at N = 1 the time t1 is
calculated.

Denoting by

C = − A

α2
,

we get that

B ·
t1∫
0

exp

(
C

t2

)
dt = 1. (11)

Taking into account the geometric meaning of a definite integral (11), one
can determine the point t1, by numerical method knowing that the area of
the figure bounded by the function f(x) on the interval [0, t1] should be equal
to 1.

In the basic cavitation equation (1), we substitute the expression for pressure
in the form (2). Then the basic cavitation equation (Rayleigh equation) takes
the form:
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3

2
Ṙ2 =

=
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)(
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τ

)]
. (12)

The differential equation for the growth of an embryo vapor has the form:

ρl

(
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3

2
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)
= −p(t)− 2σ

R

(
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ρv

)−1

, (13)

where p(t) is defined by the formula (2).

Substituting p(t) from (2) into (13), we get:
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(
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)
= α(t+ t1) · exp

(
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)
− 2σ

R

(
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)−1

. (14)

For the reasons described above, we will assume t1 ≈ 0, and then the
equation (14) takes the form:

ρl

(
RR̈ +

3

2
Ṙ2

)
= α · t · exp

(
− t

τ

)
− 2σ

R

(
1− ρl

ρv

)−1

. (15)

It is solved by us numerically. For this, it is necessary to present the last
equation in the form of a system of two equations in which the following
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change of variables is introduced:

R = u(2),

Ṙ = du(2) = u(1),

R̈ = du(1).

The equation (15) by changing variables is converted to the form:
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The last equation is solved numerically by the Runge–Kutta method. The
calculations were carried out for τ = 10−9 s.
It was believed that at the initial time, a homogeneous liquid that does not

contain vapor bubbles was at a given temperature and pressure

t = 0, pl = pl0, Tl = Tl0, Nb = 0, u = 0.

The rate of pressure drop αp at the point with coordinate x = 0 was set by
the boundary conditions

x = 0, pl = pl0 − αp · t,
∂u

∂x
= 0.

After a bubble appeared, the following initial conditions were accepted
for ordinary differential equations describing its development (12): R = Rc,
pv = pb, tv = Tl.

4. Method of numerical solution of the equation

We introduce the following notation, convenient for working with the
program for the numerical solution of the basic cavitation equation in the
form (1):

ωR0 = omr0,
2σ

R0

= sr0, Pb = pb,

(ωR0)
2 = omr02,

(
Pb +

2σ

R0

)
= pbsr0, Pa = pa,

ρ(ωR0)
2 = rhomr, ϕo = fio, R∗ = u(2), z∗ = u(1).

Then the original equation (1) takes the form of a system of two first order
differential equations:
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du(1) = −3

2

1

omr0

u(1)

u(2)
+

+
1

rhomr

1

u(2)

[
pbsr0

(u(2))3k
− sr0

1

u(2)
− pb+ pa · sin(τ + fio)

]
,

du(2) = u(1).

The resulting system of differential equations is solved numerically by the
Runge–Kutta method. It should be noted that numerical solutions were cited
earlier for other cases [5–9].

5. The program for the numerical solution

We have created a program for the numerical solution of the cavitation
equation in the Compaq Visual Fortran Professional programming language.
Its work is based on the Runge–Kutta method.
Initially, the main program asks for the values of external parameters, such

as fluid temperature, oscillation frequency, and others (see Fig. 1). Then
the main program refers to an array of tabular data for the values of surface
tension, fluid viscosity, fluid pressure, vapor pressure at a given temperature.
These tabular data are discrete values and do not always correspond to a given
temperature. Therefore, the main program refers to auxiliary subroutine 1,
which approximates or extrapolates the table data to a given point.

Figure 1. Block diagram

To calculate parameters such as the initial radius of the cavity, the pressure
at which the first cavitation nucleus appears, the initial phase of external
oscillations, the main program refers to subroutine 2, which calculates these
values based on the data already calculated by subroutine 1.
Subroutine 3 then receives from subprogram 2 a task to calculate the time

t1 during which the first cavitation nucleus appears in the fluid. The required
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tabular data is requested from subroutine 1. The result of the calculation is
reported to the main program.

Having collected all the necessary data, the main program calculates the
basic cavitation equation for the maximum amplitude of oscillations of the
cavity in case of acoustic cavitation [10,11]. It should be noted that this case is
also interesting in the possibility of initiating a nuclear fusion reaction [12–14],
which is confirmed by the theory [15,16].

Below is a part of the main program for the numerical solution of this
system of equations, written in the programming language Fortran:

external rad,res
dimension pt(5), u(2), du(2), aux(8,2)
common omr0, rmr0, rhomr, pbsr0, pk, sr0, pa, pb, pi, nk,

fa, r0, p, p1, fi0, ky↪→

open(1, file='p.dat')
open(2, file='r.dat')
open(3, file='bubble.txt')
print *, 'The program for calculating the dynamics of the

bubble with acoustic effects and the frequency of Fa
according to Runge Kutta method.'

↪→

↪→

print *, '-------------------------------------------'
print *, 'time pressure dependence P = P (t / T) is

written to the file "p.dat", the time dependence of
the radius R / R0 = f (t / T) is written to the file
"r.dat".'

↪→

↪→

↪→

print *, 'THE PROGRAM WILL NOT WORK without an auxiliary
file "bubble.txt" and also without the additional
program "rkgs.for"!'

↪→

↪→

read (3, *) q1, q2, fa, pa, pb, p1, r0, sig, amu, ro, kt,

ky↪→

pi = 3.141592654
pk = 5
print *, 'The following parameters are entered here:'
print *, '1) Time step integration (wt): pt (3) =', q1
print *, '2) Integration error: pt (4) =', q2
print *, '3) Acoustic frequency: Fa =', fa, 'Hz'
print *, '4) Pressure amplitude at a given point: Pa =',

pa, 'Pa'↪→

print *, '5) Pressure on binodals at a given point: Pb =',

pb, 'Pa'↪→

print *, '6) Pressure at the point of emergence of the

unit: P1 =', p1, 'Pa'↪→

print *, '7) Starting radius of the nucleus: R0 =', r0,

'm'↪→

print *, '8) Surface tension: sigma =', sig, 'N / m'
print *, '9) Molar mass: mu =', amu, 'kg / mol'
print *, '10) The density of the fluid at this point: po

=', ro, 'kg / m * 3'↪→

print *, '11) Number of periods studied: n =', kt
print *, '12) Number of points for one period: N =', ky
print *, ''
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print *, 'Changing these parameters is possible only in

the file' bubble.txt ''↪→

print *, 'To interrupt the program, press "Ctrl + C", for

continuation - "Enter"'↪→

pause
om=2.0*pi*fa
omr0=om*r0
omr02=omr0*omr0
rhomr=ro*omr02
rmr0=4.*amu/(r0*ro)
sr0=2.*sig/r0
fi0=asin((pb-p1)/pa)
pbsr0=pb+sr0
pt(1)=0.0
pt(2)=2.0*pi*kt
nk=1

6 continue
pt(3)=q1
pt(4)=q2
u(1)=0.0
u(2)=1.
du(1)=0.5
du(2)=0.5
call rkgs (pt,u,du,2,ih,rad,res,aux)
if(ih-10)3,3,4

3 continue
print *,' Error code ',ih
goto 5

4 continue
print *,' ATTENTION !!!'
print *, 'ERROR CODE SHOULD NOT EXCEED 10.'
print *, 'Correct, please, the parameters pt(3),pt(4)'
read(*,*)q1,q2
goto 6

5 continue
stop
end

Below are some results of a numerical simulation of the bubble behavior in
a rarefaction wave.

6. Conclusions

The mathematical model created by us allows us to investigate the dynamics
of cavitation bubbles with a change in fluid pressure. Numerical simulation
made it possible to determine the time dependence and coordinates of the
parameters of the carrier phase, the temperature and pressure of the vapor
phase [17], the concentration and size of the bubbles. The proposed model is
applicable not only to liquids, but also to metals in the liquid phase [18].
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We concluded that the model created gives a good agreement between the
calculated and experimental data [19], which demonstrates the applicability
of the approach under consideration to the problem of rapid pressure drop.
In the studied problem, the following picture takes place: the pressure

of the fluid drops in the rarefaction wave to a value below the saturation
pressure, the fluid enters a metastable state [20], intense nucleation begins
in the region of minimal pressure, after which the bubbles rapidly increase
due to the interfacial mass transfer, which ultimately account stabilizes the
pressure at a value close to the saturation pressure.
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