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The construction of Voronoi diagrams and Delaunay triangulations finds wide application in many
branches of science. Delaunay triangulations have properties which make them more desirable than
other triangulations for the same node set. Delaunay has characterized his triangulations by the empty
circle property. The partitioning and flipping methods which have been developed for digital construc-
tion of Voronoi diagrams and Delaunay triangulations only make indirect use of this property. A novel
method of construction is proposed, which is based directly on the empty circle property of Delaunay.
The geometry of the steps of the algorithm is simple and can be grasped intuitively. The method can
be applied to constrained triangulations, in which a triangulation domain and some of the edges are
prescribed. A data structure for triangulations of concave and multiply-connected domains is present-
ed which permits convenient specification of the constraints and the triangulation. The method is
readily implemented, efficient and robust.

Keywords: Delaunay, Voronoi, empty circle, shortest diagonal, triangulation theorem, partitioning,
flipping, constrained, half edge, dihedral cycle

1. Voronoi Diagrams and Delaunay Triangulations

Over centuries, outstanding scientists have considered the following problem: Given a
set of sites in a plane, partition the plane into regions in such a way that all points of a region
are at least as near to a particular site as to any other site of the set. This problem has arisen
in many applications [1] [2] [3]. Johannes Keppler (1571-1639) encountered Voronoi dia-
grams when he considered the densest packing of spheres, René Descartes (1596-1650)
when he investigated the distribution of matter relative to fixed stars, Johann Dirichlet (1805-
1859) when he constructed integer lattices, John Snow (1813-1853) when he related the
outbreak of cholera in London to the location of water pumps, Georges Voronoi (1868-1908)
when he extended the Dirichlet tessellations to higher dimensions and Boris Delaunay (1890-
1980) when he generalized Voronoi diagrams and their duals to irregularly spaced sites in d-
dimensional space. Many additional examples of Voronoi diagrams have been reported, for
example in gold mining, crystallography, metallurgy and meteorology. Today diagrams which
relate sets of nearest points to sites in a plane are known as Voronoi diagrams, sometimes
also as Dirichlet tessellations. Extensions of the nearness concept to weighted tessellations
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by Dirichlet [4] have been studied by Aurenhammer [5] and are today known as power dia-
grams. Extensions to power diagrams are not treated in this paper.

The concept of triangulation has been related to the concept of sets of nearest points by
Voronoi [2]. The relationship was deepened when Delaunay [3] distinguished the triangula-
tion, which is derived from a Voronoi diagram, from other triangulations for the same set of
sites by defining the empty circle property as follows: A triangulation is Delaunay if, and only
if, the interior of the circumscribed circles none of its triangles contains sites. Triangulations
with the empty circle property are today called Delaunay triangulations. They have applica-
tions in many branches of science, for example in computational geometry and in the net-
works for discrete methods of physical analysis such as the finite element method.

varanol varax

Figure 1: Voronoi diagram in a plane

Figure 1 shows an example of a set of sites in a plane and the corresponding Voronoi
diagram. The straight line segment that is a boundary between two Voronoi regions is called
a Voronoi arc. An intersection of Voronoi arcs is called a Voronoi vertex. A Voronoi circle can
be drawn with a Voronoi vertex as midpoint such that it passes through the sites of the
Voronoi regions that meet at the Voronoi vertex. Voronoi diagrams have distinctive properties
[6]. Each Voronoi region is convex. The diagram contains bounded and unbounded regions.
At least three arcs and at least three regions meet at a Voronoi vertex, and the distances of a
Voronoi vertex from the sites of the regions which meet at the vertex are equal.

Figure 2 shows the Delaunay triangulation for the set of sites in figure 1. If a Voronoi cir-
cle passes through exactly three sites, these sites are the corners of a Delaunay triangle and
are called Delaunay nodes. If the circle passes through more than 3 sites, the sites define a
convex polygon that can be decomposed into Delaunay triangles. The decomposition is not
unique. The straight line segment connecting two nodes of a Delaunay triangle is called a
Delaunay edge. The Delaunay triangulation is the convex hull of the set of sites in the
Voronoi diagram. While the Delaunay triangulation is not the only possible triangulation of the
sites of the Voronoi diagram, it is the triangulation for which the magnitude of the smallest
angle of all triangles is at a maximum. This property is advantageous for discrete analysis,
for example by the finite element method, where the use of nearly equilateral triangles in-
creases the accuracy of the solution.
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Figure 2: Delaunay triangulation for the Voronoi sites in Figure 1

A triangulation for a set of sites is called unconstrained, if neither the boundary of the
area covered by the triangles is prescribed, nor any of its interior edges. The boundary of an
unconstrained triangulation is the convex hull of the given set of sites. The two main classes
of algorithms, which have been developed for unconstrained triangulation, make use of parti-
tioning of the set of sites and of edge flipping respectively.

If a subdomain of the area covered by the convex hull is prescribed for the triangulation,
or if any of its internal edges is prescribed, the triangulation is called constrained. The goal of
the research, which is reported in this paper, is to determine whether it is promising to extend
one of the two conventional methods to include constraints, or whether the problem can be
solved more advantageously with a novel approach. For this purpose, the relationships be-
tween the existing methods of unconstrained triangulation are analyzed. It will be shown that
they are all based on the same basic property, which was discovered by Delaunay. A novel
method of constrained analysis, which is based directly on this property, will be presented.

2. Duality of Voronoi Diagrams and Delaunay Triangulations

Voronoi diagrams and Delaunay triangulations are related by the concept of duality. Du-
ality is a concept which is encountered in mathematics in many different forms. In the context
of Voronoi diagrams and Delaunay triangles, duality is a bijective mapping which reverses
the inclusion relationships. This mapping will now be defined.

A Delaunay triangulation is a planar subdivision whose element set D consists of nodes,
edges and triangles. It is arbitrarily named the primal subdivision of the plane, and its ele-
ments are called primal elements. The Voronoi diagram is a planar subdivision whose ele-
ment set V consists of vertices, arcs and regions. It is called the dual subdivision of the plane
and its elements are called dual elements. Consider a mapping f of the set of elements D of
the Delaunay triangulation to the set of elements V of the Voronoi diagram:

f:D>V (1)
f bijective mapping for duality (set of ordered pairs)

D elements of the Delaunay triangulation (domain of the mapping)

\ elements of the Voronoi diagram (target of the mapping)

The bijective mapping function is defined as follows:
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f(primal node n,) = dual regionr, f'(dual regionr) = primal node n, (2)
f(primal edge e,) = dual arca, f'(dualarca,) = primal edge e,
f(primal cell c,,) = dual vertex v, f'(dual vertex v, ) = primal cell c,
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Figure 3: Duality between a Voronoi diagram and a Delaunay triangulation

Figure 3 shows mapping (2) for the Voronoi diagram in figure 1 and the Delaunay trian-
gulation in figure 2. The reversal of the inclusion relationship is illustrated for cell c, in the
primal subdivision, which contains nodes n,, n, and n,. Mapping f yields the following images:

f(c,) =v, f(n,) =r, f(n,) =r, f(ng) =r, 3)

Regions r,r, and r;, which are the duals of the nodes n,,n, and n, contained in
cell c,, all contain vertexv,, which is the dual of cell c,. The reversal of the inclusion
is illustrated by edgee;in the primal subdivision, which contains
nodes n, and n,. Mapping f yields the following images:

fleg) = a, f(n,)=r, f(ng) =r (4)

Regions r, and r,, which are the duals of nodes n, and n, contained in edge e, in
the primal subdivision, all contain arc a,, which is the dual of edge e,

3. Graphical Construction of Delaunay Triangulations

The historic development from Voronoi diagrams to Delaunay triangulations suggests an
intuitive approach to the construction of Delaunay triangulations. Using paper, pencil and the
capability of human vision to analyze shape, the graphic construction proceeds as shown in
figure 4.

[EOMETPUA CPEVHHbIX MOBEPXHOCTHBIX OBOMOYEK 157



Galishnikova V.V., Pahl P.J. Structural Mechanics of Engineering Constructions and Buildings, 2018, 14 (2), 154-174

u
u

Figure 4: Graphical construction of a Delaunay triangulation

Let the coordinates of a set of sites be given. Following the empty circle concept of De-
launay, an empty circle passing through three of the sites is chosen by inspection. The mid-
point v, of this circle is a Voronoi vertex. The edges of the triangle are Delaunay edges and
the sites at the corners of the triangle are Delaunay nodes. The three bisectors of the edges
pass throughv, and contain Voronoi arcs with v, as end point. The left diagram in figure 5
shows the empty circle and the right diagram the subdivision of the plane into three point
sets, each of which is nearest to one of the sites of the initial Delaunay triangle.

The second vertex of the Delaunay arcs radiating from v, is determined next. For this pur-
pose the bisectors of the line segments connecting the given sites are constructed as shown in
figure 4. For example, the bisector of line segment nTn4 is aTaz. Let the bisector leaving v, in
the direction of point a, be followed. This bisector is the boundary that separates points that are
nearer to site n, from points that are nearer to site n,. After this arc has reached the point of
intersection with bisector ﬁz, it enters a set of points which are closer to site n, than to
sitesn, and n,. The point of intersection is therefore the second vertex v, of the arc. If the arc
leaving v, in the direction of point e, is followed, none of the bisectors in figure 4 is intersected.
This arc is infinite. Similarly, the arc leaving v, in the direction of point b, is infinite. The bisec-
tors which are overlaid by the constructed arcs are removed, because the Voronoi regions are
convex, such that each bisector can overlay only one arc of the Voronoi diagram.

ntialeirele intial subdivision

Figure 5: Initial step of the graphical construction
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The vertices, which are constructed on the bisectors leaving the first vertex, are collect-
ed in a list. After all bisectors at node v, have been treated, one of the vertices in the list is
chosen and removed from the list. The remaining bisectors leaving this vertex are traversed
in the direction of the line segment which they bisect. If they intersect another bisector, a
Voronoi vertex is constructed at the point of intersection. It is the second vertex of the arc
and is added to the list. If none of the remaining bisectors is intersected, the arc is infinite.
The bisector is removed from the diagram in figure 4. The procedure ends if the vertex list is
empty after the bisectors at a vertex have been treated.

The line segment connecting two nodes is an edge of the triangulation if it is bisected by
one of the Voronoi arcs that are constructed. For example, segment nTn4 is an edge because
it is bisected by arcv,v,. Segment n,n, is not an edge of the Delaunay diagram because it is
not bisected by any of the arcs that have been constructed.

The graphical construction shows how the duality mapping in figure 3 can be derived.
Arc a, overlays the bisector of edge e,.Nodes n and n, of edge e, are the duals of re-
gions r, and r, whose common boundary is arc a,. Vertices v, and v, of arc a, are the duals
of cells ¢, andc, whose common boundary is edge e,. The end of an infinite arc is the dual
of the infinite area consisting of the difference of the area of the infinite plane and the areas
of the Delaunay triangles.

4. Construction of Delaunay Triangulations by Partitioning

The graphical method of construction in section 3 suffers from the disadvantage that the
inter-section of the bisector leaving a Voronoi vertex must be tested with all other bisectors of
the diagram. While human vision readily solves this problem, digital testing of the bisections
is expensive. Algorithms which reduce the problem by partitioning the set of sites into sub-
sets, whose Voronoi diagram can be determined by inspection, and merge these diagrams
pairwise until only the desired Voronoi diagram remains, are called “divide and conquer” al-
gorithms. An algorithm of this type by Guibas [7] has been used by many researchers as
basis for diverse modified algorithms of similar type, which differ primarily in the merge oper-
ation. Many contri-butions to the topic have been made, for example by Shamos [8] and
Skvortsov [9] [10]. A modified version of the Guibas algorithm is presented in figure 6.

The given sites are decomposed into sets of two or three sites, such that coordi-
nates x, of the sites in the first group are less than the coordinates x, off all other sites, the
coordinates x, of the sites in the second group are less than the coordinates x, of the re-
maining sites, and so on. Figure 6 shows a given set of 6 sites n, in diagram D1 and their
decomposition into two groups of 3 sites each. The Delaunay triangle for each group of 3
sites is constructed by inspection. The triangles can be highly distorted if the coordi-
nates x, of the three nodes differ significantly. It is assumed that the sites are not collinear.
Special methods are required if the sites are collinear.
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Figure 6: Construction of a Delaunay triangulation by partitioning and merging

In order to merge the two groups, a base line segment connecting a node of the left
group with a node of the right group is determined such that all nodes lie on or above the
base line. In diagram D2, the base line connects nodes n, and n,. The gap between the two
triangles in diagram D2 is triangulated such that s single triangulation results, which is con-
vex.

Diagram D3 shows that this is achieved by constructing
bisectors b, , and b, where b, denotes the bisector of the line segment connecting
sites n, and n . The bisectors intersect in a Voronoi vertex (not shown in D3) which is the
midpoint of a circle through sites n,,n, and n,. The triangle with corners n,,n, and n; is a De-
launay triangle because the circle is empty. Diagrams D4 to D6 show the analogous con-
struction of the other Delaunay triangles for the merge Operation. If there are more than 6
nodes, additional groups are formed in diagram D2 and there will be more than a single level
of merge operations. For a set of 3" = 59049 sites, 10-1=9 levels of merging are re-
quired. The complexity of the method is O(n log(n)).
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Figure 7: Flipping of edges in the merge operation

5. Construction of Delaunay Triangulations by Flipping

Figure 7 shows that part of the merging process can be achieved by selecting a quad-
rangle and replacing its diagonal by the other diagonal. In diagram D2 of figure 7 diago-
nal e, can be replaced by diagonal e, in the quadrangle with
nodes n,,ng,n, and n,, where e, is the edge connecting nodes n, and n_.In the literature,
this operation is referred to as edge flipping in the quadrangle. Diagram D4 in the same fig-
ure shows that flipping can be accompanied by the construction of an additional edge.

The concept of edge flipping was first presented by Lawson [11] and developed further
by Joe [12], de Loera [13] and many others. The basic concept is to construct an arbitrary
triangulation for the given set of nodes and then to flip edges until the circumscribed circles
of all triangles are empty as required by Delaunay. The convergence of this procedure is
proved by studying the effect of edge flipping on a triangulation which is not yet Delaunay.

Angle vector: Different triangulations are compared by means of an angle vector. Let
the number of triangles in the triangulation be m. The 3m angles of the triangles are arranged
in ascending order in in a vector t which is called the angle vector of the triangulation. The
angle vector t of a triangulation T is compared row-wise with the angle vector t of another
triangulation T of the same node set. The angles in vectors tand t are denoted
by o, and @;. The comparison starts in with the entries in row 0. The first pair of an-
gles (a,,@,) which are not equal determines the lexicographic order of the two vectors.
If o, > @, then vector tis larger than vector t.

o, o,
oy o,
t = t = — t>t = V(=x,) A o, >0 (5)
(o4 Q, i<k
k K
a3m a3m

Triangulation T is considered to be better than triangulation T if vector tis larger than vec-
tor t. The optimal triangulation maximizes the smallest angle that occurs in the triangles.
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Regular edge: In order to prove the existence of optimal triangulations, the effect of flip-
ping edges in an existing triangulation is studied. Figure 8 shows the effect of flipping an
edge in a convex quadrilateral of a triangulation. Let t be the angle vector for triangles abc
and adb in the triangulation with edge ab. Let t be the angle vector for the triangulation with
edge cd. Edge ab is called regular if vector t is lexicographically larger than or equal to vec-
tor t.

a
edge ab edge cd

Figure 8: Flipping edge ab to edge cd in a quadrilateral abcd

t >t = edgeabisregular (6)
If abcd is a rectangle, both edges are regular. Otherwise, one edge is regular and the other
edge is irregular.

Proof: Figure 9 shows two triangulations for a quadrilateral with nodes n,. The triangles
formed by diagonal n,n,are shown in diagram (a), the triangles formed by diagonal n,n, in
diagram (b). Diagram (a) contains the circumscribed circle of triangle n,n,n,. Diagram (b)
contains the circumscribed circle for triangle n,n,n,. The extended diagonals n,n, and n,n, in-
tersect the circumscribed circles in point u. It will be shown that one of the edges n,n,and
n,n, is regular and the other irregular.

Edge n,n, of triangulation (b) is regular if the six angles a+e,b,h,c,d+f,g of the two
triangles in (b) are larger than the smallest angle ¢ in triangulation (a). The geometry of the
triangles and of the circumscribed circle of triangle n,n,n, yields the following relations be-
tween the angles in triangulation (a):
e+x =¢ x+d =nh (7)
f+y =b y+a=g
Similarly, the geometry of the triangles and the circumscribed circle of triangle n,n,n, yield
the following relations between the angles in triangulation (b):

c-s = e s+d = h (8)
g-t = a t+f =b
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riengulaticn (a) irangulstion b)

Figure 9: Regularity test for the diagonals of a convex quadrilateral

It follows from (8) that angles b+ c and g+h cannot be the smallest angle in triangulation
(a):
b+c e+f+x+y > e 9)
g+h = a+d+x+y > a

Each of the remaining four angles a,d,e,f can be the smallest angle in triangulation (a).
It will now be shown that in all four cases, each of the six angles a+e,b,h,c,d+f,g in trian-
gulation (b) is larger than the smallest angle in triangulation (a).

Case 1: p=a<d,e,f: (10) Case 2: p=d<a,e,f: (11)
a+e > a a+e > d+e > d

b = f+y > a+y > a b = f+y > d+y > d

h = s+d > d > a h = s+d > d

c = e+X > a+x > a c = e+x > d+x > d

d+f > d > a d+f > d

g = t+a > a g = t+a > t+d >d
Case 3: p=e<a,df: (12) Case 4: 9o=f<ade: (13)
a+e > d+e > e a+e > f+e > f

b = f+y > e+y > e b = f+y > f

h = s+d > s+e > e h = s+d > s+f > f

c = e+x > e c = e+x > f+x > f

d+f > e+f > e d+f > f

g = t+a > t+e > e g = t+a > t+f > f

The proof shows that edge n,n, is regular. Generally, the regular edge in a quadrilateral can
be recognized by two attributes:

Empty circle: Edge n,n, in triangulation (a) is irregular. Node n, lies inside the circum-
scribed circle and the circle is therefore not an empty circle. Edge n,n, in triangulation (b) is

regular. Noden, lies outside the circumscribed circle, which does not contain any nodes and
is therefore an empty circle.
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Shortest diagonal: The regular diagonal n,n, is shorter than the irregular diagonal n;n,. This
follows from triangulation (a) where triangles n,n,n, and n,n,u are congruent, such that
chords n,n; andn,u are of equal length. Node n, is an inner point of chord n,u such that the
length of n,n, is less than the length of n,u, and therefore less than the length of n,n,.

Total flip algorithm: The total flip algorithm is based on the property derived above, that
a diagonal of a quadrangle formed by two neighboring triangles is a regular edge if it is
shorter than the other diagonal of the quadrangle. The algorithm is initiated by constructing
an arbitrary triangulation for the given node set.

S d B d ) d
c c c

a k c k c k
tnangulation (a) tnangulation (b) tnangulation (c)

Figure 10: Flipping edges in a the total flip algorithm

The quadrilaterals in the triangulation are traversed. If the diagonal of a convex quadri-
lateral is not a regular edge, it is flipped such that it becomes regular. Flipping of a diagonal
in a quadrilateral can destroy the regularity in adjoining quadrilaterals as shown in figure 10.
In triangulation (a) the diagonal be of quadrilateral abde is regular, whereas diagonal bd of
quadrilateral bcde is irregular. Diagonal bd is flipped to create triangulation (b). In triangula-
tion (b) the diagonal be in quadrilateral abcd is irregular, whereas diagonal ce in quadrilateral
bcde is regular. Diagonal be is flipped to create triangulation (c). Diagonals ac and ce are
regular in triangulation (c), which is the Delaunay triangulation.

The traversal of the quadrilaterals of the triangulation must be continued until all diagonals
are regular (the circumscribed circles of all triangles are empty). Unfortunately, the algorithm
converges slowly for large node sets and is therefore not suitable for application.

Incremental flip algorithm: An envelope triangle is constructed whose interior contains
all nodes of the given set. The given nodes are added to the triangle one at a time, as shown
in figure 11. After each node addition, edge flipping is applied until the circumscribed circles
of all triangles in the triangulation are empty. Joe [12] and Edelsbrunner [14] have shown that
the incremental flip algorithm always converges. Figure 11 shows an example of the edge
flipping in the envelope triangle after nodes have been added.

Node a, is inserted and edges a,n,,a,n, and a,n, are constructed. Because the circles
passing through (n,,n,,a,).(n,.n,,a,) and (n,,n,,a,) are empty, the three edges are regular and
there is no flipping. Node a, is inserted and edges a,a,,n,a, and n,a, are constructed. The
circles passing through (a,,a,,n,) and (n,,n,,a,) are empty such that edges a,n, and n,n, are
regular. The circle passing through (a,,a,,n,) contains node n, such that edge a,n, must be
flipped. Node n, is inserted and edges (n,a,),(n,a,) and (a,a,) are constructed. The circles
passing through (n,,a,,n,) and (n,,a,,a,) are empty such that edges n,n, and n,a, are regu-
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lar. The circle passing through (a,,a,,n,) contains nodes a, and n, such that edge n,a, must
be flipped. The procedure can be continued by inserting additional nodes.

sar 9.

Figure 11: Insertion of nodes a,, a, and a, in the envelope triangle (n,n,n,)

The insertion of a node and construction of edges inside a triangle can make edges of
neighboring triangles irregular. These edges must be identified and tested. A data structure
is required in which the edges, whose regularity has not yet been tested, are administered.
Baudson [15] has shown that this data structure is complex and expensive. In addition, not
every edge, which should be flipped, is flippable. If the union of the triangles adjacent to the
edge is not a convex quadrangle, the edge is not flippable. It can, however, be shown [16]
that the incremental flip algorithm converges because the search for locally irregular edges is
finite and does not cycle, and because at least one of the locally irregular edges is flippable.

6. Constrained Delaunay Triangulation

Evaluation and novel concept: The analysis of the existing methods of unconstrained
Delaunay triangulation has shown that the methods are all based on the empty circle proper-
ty which Delaunay discovered. The methods differ in the application of the property. The fun-
damental problem is evident in the graphical construction in section 3. Because all n sites
must be traversed, and the number of bisectors to be tested per site is proportional to n, the
complexity of the graphical method is O(n?).

Partitioning of the set of the sites reduces the complexity of the triangulation
to O(nlog(n)), but the initial set of triangles is highly deformed and special cases must be con-
sidered to make the algorithms robust. The merging operation can be based directly on the
empty circle property as shown, though Lawson [11] proceeded differently by constructing and
merging Voronoi diagrams. The flipping, which is required in the merge operations of the parti-
tioning method, is the primary operation of the second class, the flip triangulation algorithms.
Their theory is well developed, but special effort is required to make the method robust, and
complex data structures and procedures must be developed when then method is implement-
ed. As shown above, the flip triangulation algorithm also uses the empty circle property.
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On the basis of this evaluation, it was decided to base the constrained Delaunay triangu-
lation on two foundations. The first is a data structure which permits convenient and explicit
specification of the constraints and is adaptable as the triangulation develops. The second is
direct application of the Delaunay empty circle property based on the triangulation theorem.

Data structure: Unconstrained Delaunay triangulation of a node set is confined to a
domain of the plane, which is the convex hull of the node set. The triangulation is called con-
strained if it is restricted by one or both of the following conditions:

- The triangulation is restricted to a subdomain of the convex hull, which is called its face.
- Edges are prescribed between pairs of nodes in the given set.

outer polygon inner palygon face
Figure 12: Description of a face as the intersection of the interiors of polygons

A face is defined by means of a set of polygons as shown in figure 12. The oriented pol-
ygons are not self-intersecting and do not intersect or touch each other. The outer polygon
contains all of the inner polygons. An inner polygon does not contain any other polygon. The
area of the face is defined as the intersection of the inner point sets of the polygons. The
edges which are prescribed in the face may not intersect each other or a polygon of the face.

arrow potygon of trangie t dihecral cycie a1 node n

=
2
N/

coarse arrow triangulation with prescribed edge e

N
S

Y

Figure 13: Arrow data structure for a triangulation
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A data structure is required to relate the triangulation algorithm to the prescribed con-
straints. It is created by splitting each edge of the triangulation into two half-edges [7], which
are called arrows. The arrow objects of the closed polygon on the boundary of a triangle are
connected by a pointer next, as shown in figure 13. The arrows leaving a node of the triangu-
lation are ordered by their dihedral angle about the normal vector of the plane. The arrows of
a dihedral cycle are connected by a pointer rot, as shown in figure 13. This data structure
can also be used to describe the dual Voronoi diagram. Quadedge data structures [17] have
been developed which combine the description of the Delaunay and Voronoi subdivisions for
a node set.

Triangulation theorem: If nodes R, S, T are the corners of a triangle D,, whose circum-
scribed circle is empty, and A is an arbitrary node outside the circumscribed circle, then a
triangle D, can be constructed with node A and two of the nodes of set {R,S, T} as corners,
such that the circumscribed circle of D, does not contain the third node in the set. Figure 14
shows an example of triangles D, and D, and their circumscribed circles.

D
o

tnangle RST and node A construciad triangle ATS
Figure 14: Given triangle D, and constructed triangle for the triangulation theorem

Proof: The midpoint M, of the circumscribed circle of the given triangle D, is chosen as
origin of a Cartesian coordinate system (x,y). The corners of triangle D, are named R,S,T in
the anti-clockwise direction. Choose an edge ST of triangle D, such that the third corner R
and point A are located on opposite sides of the line containing edge ST, as shown in figure
15. Axis x points from origin M, to the midpoint M, of edge ST.

Figure 15: Geometric construction for the proof of the triangulation theorem
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The midpoint of the circle which passes through points A, T and S is denoted by M,. The
radii of the circles with midpoints M, and M, are denoted by r,andr,, the distance between
points R and M, by z. Point R is located outside the circumscribed circle of triangle ATS if the
conditionz > r, is satisfied. The rule of Pythagoras is used in the following derivations.

22 = (X=X, ) +y?

2 2 2
= X5 —2XX; +(X] +V7)
Y2 2
= X; —2XX; +1,

o= (X _X2)2 +Y§

= X5 = 2X,X; + (X3 +3)

= X5 —2X,X, +I7
22 —r17 = 2%,5(X, - X,) (14)

The counter-clockwise orientation of boundary RST and the choice of the coordinate
system assure that x, >x,. Because edge ST was chosen such that points R and A lie on
opposite sides of the line passing through points S and T, and because point A is located
outside the circumscribed circle of triangle RST, coordinate x, of the midpoint of the circum-
scribed circle of triangle AST is positive. It follows from expression (14) that \ z\ > \rz , such
that point R lies outside the circumscribed circle AST. This proves the theorem.

Basic construction step: Let a domain, which is to be triangulated, be described by a
set of nodes N={n,,...,n ;) and a set of arrowsE ={e,,....e, ;) on its boundary. Assume
without loss of generality that arrow e, points from node n,to noden,. A
noden, e N-{n,n,}is to be determined such that the circumscribed circle of
triangle nyn,n, is empty.

A Cartesian local coordinate system with axes s and t is constructed with the midpoint U of ar-
row n,n, as origin. Unit basis vector g, points in the direction from n, to n,, and unit basis vec-
tor g, is constructed such that g,,g, and the normal vector n of the plane form a right hand system.

- x
G A

Figure 16: Geometric construction for the basic triangulation step
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_ X=X, _ 1 X1 =X | g, = -d (15)
‘X1—XO‘ \/(X1_X0)2+(y1_y0)2 Y1~ Yo u c

A noden_eN-{n,n,} is chosen and the circle through nodes n,,n, and n, with mid-
point M, is constructed as shown in figure 16. Because n, must be an interior point of the face,
only points to the left of axis s are considered. Node n, is therefore rejected if the area of trian-
gle nyn,n, is negative. Depending on the shape of the face, not all points to the left of axis s are
interior points. However, the point left to axis s, which is nearest to edge e, is an interior point.

9

Let the vector from the global origin G to midpoint M, be denoted by m,. The distance from
midpoint M, to nodes n, and n, is equal. This leads to the following equation for the circle:

(mk _XO)T(mk _xo) = (mk _xk)T(mk _xk)

2(x, — X, )ka = x:xk - ngo (16)
Vector m, from origin G to midpoint M, equals the sum of vector x, from G to the midpoint U
of arrow e,, and vector t,g,, where t, is the t-coordinate of midpoint M, :

1
m, = x,+t9, = E(x0 +X,) +10, (17)
Substitution of m, from equation (17) into equation (16) yields an expression for t, :

tk _ (xk _xo)T(ka_ x1) (18)
2(Xk _xo) 9,

Algorithm: The triangulation is initiated by choosing a boundary arrow e, of the outer
polygon with nodes n,and n,, and a node n, € N—-{n,,n,} is selected. Coordinate t, is comput-
ed with expression (18). Triangle n,n,n, is called the trial triangle. The next test point n, is cho-
sen in set N—{n,,n,,n,} and its coordinate t, is computed. The values of t, and t, determine
whether triangle nyn,n, replaces n,n,n, as trial triangle. The test is illustrated in figure 17:

- Ift; > t, the circumscribed circle of triangle nyn,n, is not empty because it contains
node n,. Triangle n,n,n, remains the trial triangle.

- Ift, > t, the circumscribed circle of triangle n,n,n, is not empty because it contains
node n,. Triangle n,n,n, is empty and becomes the new trial triangle.

- If t, = t, the four nodes lie on a common circle. Either of the triangles can be chosen as trial

triangle.
t t t

o case Z b, ot case 3t —1,

Figure 17: Empty circle test for a trial triangle
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The procedure is repeated for the remaining nodes in set N. After the node with the
smallest coordinate t, has been determined, the corresponding triangle is added to the trian-
gulation. This operation modifies the boundary of the face. Nodes and edges, which no long-
er are part of the area of the face that has not yet been triangulated, are removed. The first
edge without a neighboring triangle which succeeds e, in the new boundary is treated in a
similar manner. The process is repeated and terminates after the outer polygon has been
traversed. Each of the inner polygons is then treated by analogy.

After the first traversal of the outer polygon and all inner polygons, the number of inner
polygons may differ from the initial specification. If the modified face is not completely trian-
gulated, a second traversal is initiated with the outer polygon. The traversals are repeated
until the face is completely triangulated. The algorithm is illustrated in figure 20.

The addition of one triangle by the described method described can lead to the automat-
ic creation of another triangle. It is not guaranteed that the automatically created triangle has
an empty circumscribed circle. This deviation from the empty circle property is due to the
constraints that have been specified, and cannot be avoided. The simplest case of automatic
generation of triangles is shown in figure 18 with only 4 nodes.

L
spaot cabon ranquixcr

Figure 18: Automatic creation of triangle t, after the construction of triangle t,

Lens: The number of nodes, for which the coordinate t, is computed, is reduced signifi-
cantly by introducing a lens. Only the nodes which are located inside the lens are considered
in the search. Point n, is chosen freely. After a trial triangle has been determined, the circum-
ferential circle of the triangle determines the lens as shown in figure 19. With each improve-
ment of the trial triangle, the size of the lens decreases. The points within the lens can be
determined at low cost, for example by storing the node set in a quadtree [18]. The quadtree
can be used to choose one of the neighbors of nodes n; or n, as first trial node n,. The com-
plexity of the construction of a quadtree with n entries is O(n log(n)).

t

Figure 19: Lens for trial triangle nyn,n,
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Example: Figure 20 shows a set of measuring stations at a lake with an island. The sta-
tions are treated as nodes of a constrained Delaunay triangulation, which is to be restricted
to the water surface. Figure 20 illustrates the growth of the triangulation in the traversals of
the polygons of its boundary. The time required for the triangulation and its graphical presen-
tation on a conventional laptop computer is hardly noticeable.

S -

laze with sfabions 1. traverzal

2 vaversy 3 braversy

< vaversal C. raversy

& raversy complets

Figure 20: Triangulation of measuring stations at a lake
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7. Results and Conclusions

It has been shown that the complexity of the partitioning and the flip algorithms, and
some of the problems encountered with their robustness, can be avoided by returning to the
empty circle property of Delaunay and using the bisector concept illustrated in the graphical
example to construct constrained triangulations incrementally. The complexity of the novel
method depends on the complexity of the process which determines the subset of the given
nodes that lies within a lens. Quadtrees are one of the possible tools for this task.

The extension of the method presented in this paper to polyhedral subdivisions of three-
dimensional space containing the points nearest to given sites is a promising area of re-
search. This will require the replacement of the empty circle property by an empty sphere
property, which has also been discovered by Delaunay. The half-edge structure for the de-
scription of the triangulation and its constraints will be replaced by a half-face structure,
where the dihedral cycles at the nodes are replaced by dihedral cycles at the edges. The
three-dimensional cells will be described by the intersection of an oriented outer polyhedron
with a set of inner polyhedra. The circular lens will be replaced by a spherical lens, and
quadtrees will be replaced by octrees to collect the nodes located inside the lens.

The data structure required for the description of three-dimensional Voronoi diagrams
and Delaunay triangulations can also be useful for the description of polyhedral subdivisions
of space when original buildings are mapped to digital models in building information model-
ling (BIM). This is an area of great practical importance and intensive current research.

© Vera Galishnikova, Peter Jan Pahl, 2018
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NOCTPOEHUE NNIAHAPHbIX TPUAHTYNALUA OENOHE
C OrPAHMYEHUAMU BE3 NPUMEHEHUA ®ITUMNA

B.B. TAJIMIUHUKOBA*, IN.A. MNAJb**

* Poccuinckun yHusepcuTeT Apyx0Obl Hapoaos

117198, Poccusa, Mockea, yn. Muknyxo-Maknas, 6

** BepNVHCKUA TEXHNYECKUI YHUBEPCUTET

D-10623, denepatusHas pecnybnuka Mepmanus, bepnun, yn. 17 nions, g. 135,

(nocmynuna e pedakyuro:15 aHeaps 2018 r.; npuHsama k nybnukayuu:15 mapta 2018 r.)

MoctpoeHune anarpamm BopoHoro u TpuaHrynaummn [enoHe wWupoko NnpuMeHseTcss BO MHOMMX OT-
pacnsax Hayku. TpuaHrynaumm [lenoHe 3a cyeT cBovx 0cobbix CBOMCTB 6ornee NpeanoyTUTenbHbl, Yem
Apyrue TpuaHrynaumm ans ogHoro U Toro Xe MHOXeCTBa Y3noB. TpuaHrynaums [lenoHe xapakrepuay-
eTcs1 KpyroBbIM Kputepvem. MeToabl AeneHus u dprvna, KoTopble 6binn paspaboTaHbl Ans undpoBo-
ro KOHCTpympoBaHus guarpamm BopoHoro n Tpuanrynsumi [JenoHe, TONbKO KOCBEHHO WCMONb3yT
3TOT KpUTEpPUIn. ABTOpaMM NpeanoxeH NPUHUMNNANbLHO HOBLIV METOA MNOCTPOEHNS, KOTOPLIN OCHOBAaH
Ha MPSMOM MCMOMb30BaHUN KPYroBOro KpUTepus TpuaHrynsummn lenoHe. MeomeTpus waros anropuT-
Ma MpocTa Y UHTYUTUBHO NOHATHA. MeToa MOXET NPUMEHSTBCSA ANS TPUAHTYNAUNIA C OrpaHNYEHNSMMU,
rae 3apaHee 3agaHbl 061acTb TpUaHrynsauMmM 1 HekoTopble pebpa. MNpeacTaBneHa CTPyKTypa AaHHbIX
ONS HEBbINYKIbIX U1 MHOFOCBA3HbIX MHOXECTB, KOTopas No3BonsdeT yaobHo obycnasnueBaTtb orpaHnye-
HUA 1 Tpranrynauuio. MNpeanaraemMbii METOA OTNNYAETCs NPOCTOTON peanu3auunn, 3pdPeKTUBHOCTLIO
paboTbl U HAAEXHOCTLIO.

KnioueBbie cnoBa: [lenoHe, BopoHON, KpyroBov KpMTepun, HanMeHbLUas AnaroHanb, Teopema Tpu-
aHrynsaumu, pasbueHune, dnun, orpaHuyeHne, nonypebepHbIn, AMdapanbHbIA LMK

06 aemopax:

lanuwHukosa Bepa BnadumupogHa — NOKTOpP TEXHUYECKUX HAyK, AMPEKTOp JenapTaMeHTa ap-
XHUTEKTYPBl U CTPOMTENHCTBA MHXKEHEPHOH akaneMuu, Poccuiickuil yHHBEpCHTET ApYy»KOBI HapomIoB.
Obracmpb Hay4HbIX UHMeEPEecos. BHIYUCINTENbHAS CTPOUTEIbHAS HHKeHEpHsl, HHGOPMAIIMOHHOE MO-
ACIINPOBAHUC 3Z[aHHﬁ, TOIIOJIOTUYCCKUE KOMIIBIOTEPHBIC MOICIIN 3[[3.HI/II>1, BBIYHCIIMTCIIbHAsA MCXaHUKaA
CJIOXKHBIX CTEPXHEBBIX CUCTEM, HEJIMHEHHBIC KOHEYHO-3JIECMEHTHEIC MOJCIU U NPOrpaMMHBIE KOM-
IUIEKCHI JUTsl pacyeTa IMPOCTPAHCTBEHHBIX CTEP)KHEBBIX CUCTEM, HEJIMHEHHAs: YCTOHYNBOCTh KOHCTPYK-
uuit. KoHmakmHasi uHgpopmayus: e-mail — galishni@gmail.com

lMemep 5IH Manb — noxTOp HayK, npodeccop kadeapsl HHKEHEPHO-CTPOUTEIbHBIX HayK, bepiuH-
ckuii rexunyeckuil yausepcuter (TYD) (D-10623, Bepnun, ya. 17 urons, a. 135, @enepatuBHas pec-
ny6snuka I'epmanust). O6racmpb HayYHbIX UHMEPECO8: MaTeMaTHYeCKOe MOJISTUPOBAHHIE U ONITHMH3a-
LUS CIIOYKHBIX KOHCTPYKTHBHBIX CHCTEM, BEIYHCIIHTENbHAs CTPOUTENbHAS WHXXEHEpHs, HHPOopMaIu-
OHHOE MOJICJIMPOBAaHHE 3JJaHHUI, TOIOJIOTHYECKUE KOMIBIOTEPHBIE MOJICIU 3/1aHUH, BHIYMCIUTEIIbHAS
MEXaHHKa CJIOXKHBIX CTEP)KHEBBIX CHCTEM, HEJIMHEIHbIE KOHEUHO-3JIEMEHTHBIC MOJICIH U IIPOTPAMM-
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