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Buckling analysis
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The main subjects of the article are theoretical strength and buckling analyses of a si-
nusoidal velaroidal shell subjected to its self-weight and uniformly distributed load in geomet-
ric nonlinearity. A short history of finite element applications to shell buckling is given. The
finite element method is used in its matrix formulation. The elastic stiffness matrixes in the
local coordinate system of the membrane element are defined in their general form. The out-
of-plane geometric stiffness matrix for the plate along the same lines is derived.
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Velaroidal surface is a surface of translation on the flat rectangular plan with a
generating curve of variable curvature [1],[2]. Thus, the surface is limited by four mu-
tually orthogonal contour straight lines (k. = k, = 0) lying in the same plane.

A sinusoidal velaroid generates by two families of half waves of the sinusoids ly-
ing in mutually perpendicular planes and facing by convexities into the same side [3].
Each set of sinusoids has the identical period. Sinusoidal velaroid is limited by a flat
rectangular contour.

The history of finite element applications to shell buckling is extensive going
back to the work of Clough and Johnson (1968). The natural mode contribution of
Argyris et al. (1977) was a major addition to shell theory. It was recently modified to
include elastoplastic effects (Argyris ef al. 2000). Horrigmoe and Bergan (1978) used
the co-rotational method for nonlinear analysis and Bathe and Ho (1980), Hsiao
(1987), Mohan and Kapania (1997), Peng and Crisfield (1992) improved element per-
formance along those lines. The 3-D elasticity "degenerate" element of Ahmad et al.
(1970) was followed by, among others, Bathe and Balourchi (1980), Hughes and Lui
(1981), Dvorkin and Bathe (1984), and Buechter and Ramm (1992). In an excellent
review, Ibrahimbegovic (1997) addresses the various approaches and the complex
issues involved.

Here the derivation of the geometric
stiffness matrix is somewhat different but
consistent with the approach used through-
out this text. The linear equilibrium equa-
tions for a flat triangular shell element in its
local coordinates system are first perturbed
to yield the in-plane geometric stiffness ma-  Fig.1. A sinusoidal velaroidal shell
trix. Then out-of-plane considerations that
involve the effect of rigid body rotations on member forces yield an out-of-plane ge-
ometric stiffness matrix. The shell element that was chosen for that purpose combines
the constant stress triangle (CST) flat triangular membrane element (Zienkeiwicz
(1977)) and of the discrete Kirchhoff theory (DKT) flat triangular plate element
(Batoz et al. (1980)).

Let’s consider a sinusoidal velaroidal shell [4],[5] with the inner radius 7y = 0,
the outer variables radii from /0m to 20m and the number of waves n= 8 (Fig. 1).
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The Geometric Stiffness Matrix of Triangular Element Shells.

The local geometric stiffness matrix of the shell element is split into three dis-
tinct matrices:

l
[KE 155tk = [RETRE™ + KET® + (KE1 0

where the first, second and third terms on the R.H.S. of Eq.1. represent the in-plane
geometric stiffness matrix of the membrane, the in-plane geometric stiffness matrix of
the plate and the out-of-plane geometric stiffness matrix of the shell element respec-
tively. The total, 'tangential' stiffness matrix for use in nonlinear analysis will include,
in addition, the linear elastic stiffness matrices of a plane stress triangular element
(membrane) and that of a triangular plate element.

The geometrically nonlinear triangular shell element has eighteen local degrees
of freedom (DOF's): 3 displacements and 3 rotations at each node. The membrane
element contributes to nine displacement DOF's only. The basic three noded constant
stress triangular flat element has only six local displacement DOF's that are shown in
Figure 2. The out-of-plane contribution (the normal stiffness) of the membrane ele-
ment to the basic local shell element is a displacement DOF in the direction normal to
the plane of the element.

w,
Vm ™ Omy

(Xm.Ym) m

v) iy (ay) iy
Fig. 2. Triangular membrane element Fig.3. Triangular plate element

The flexural element contributes to eighteen local DOF's. The basic three noded
plate triangular flat element has only nine DOF's that are shown in Figure 3. The in-
plane contribution to the basic local element adds two displacement DOF's in the
plane of the element. The out-of-plane contribution adds a rotation DOF in the direc-
tion normal to the plane of the element.

In-Plane Contribution of the Triangular Membrane Element.

The elastic stiffness matrix in the local coordinate system of the membrane ele-
ment has the general form:

[KEI™™ = [, BhemDBpmem tdxdy. (2)
The local in-plane contribution of the membrane element to the geometric stiff-
ness matrix is the gradient of the nodal force vector:

[KGe];r},em = VFrrelem-

3)

In-Plane Contribution of the Triangular Plate Bending Element.

The general form of the elastic stiffness matrix of the DKT triangular plate ele-
ment may be written as:

1 ,1- t3
[Kg]plate =24 fo fo ntlate (ED) Bplatedgdna (4)

where ¢ and 7 are the usual area coordinates and B,., which appears explicitly in
Batoz et al. (1980) as a function of 7 is slightly more complex than the B, of the
membrane. Here again the local in-plane contribution of the plate element to the ge-
ometric stiffness matrix will be derived as the gradient for fixed M, of the element
nodal force vector which is given as:
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11-7m
zflate = ZAf iZ BglateDBplatedgdn q° =
0
11-m 11-7m
= ZAf f Bplate( DBplateq )dgdﬂ = ZAf f BglateMdgdn ®)
00 00
where
M = {My,, My, My, y} (6)
plate {Fe'Fje'Frrel} ’ (7)
Fe = {Frp My, My} 7= i jim,
Ge={W1 0x1 0Oy1 wy Oy 0y wy 0Oy3 03} ®)
The in-plane geometric stiffness matrix may be written symbolically as:
[ (A”)plate (Al])Plate (Alm)plate '!
[KG]plate Vszlate — I ( )plate ( ])plate ( )plate |’ (9)
l(Aml)plate (Aml)plate (Amm)plateJ
[T 2 o]l
where (Ars)plate _ |6er OMyx Ol

. 1
| 0% o (10)
aMry My
l Oxs dys OJ
The expressions for the individual terms of the geometric stiffness matrix were
obtained in closed form using symbolic algebra.

When applied to the plate, chain rule differentiation with respect to the coordi-
nates yields

11-7m
dFelal:e= Z [ax ZAff (Bplate xed Md%'dfl dxr
r=ijm 00
11-7m
d T
+6yr 24 f f (Bplate)ﬂxed Mdé&dn |dy,
0
11-7m
+ Z [a ZAff Bglaterixeddgdn dx,
r=i,jm 0
P 11-7m
+ay ZAff Bglaterixeddgdn dyr (11)
-
0 0

where dx, =u, ; dy, =v, ; r=ij,m

The first expression on the R.H.S. of Eq. 11 returns the elastic stiffness matrix
whereas the second expression becomes the geometric stiffness matrix. It is left to

clarify what is meant by Mj,., in Eq. 11. The moment vector M, of Eq. 6 contains
three components that are functions of ¢ and 1 and defined as:

Myx(6,m) = (ML, — ML) + (M — M )n + MLy, (12)
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My (§,m) = (Majfly — M}y )§ + (M3}, — My )n + Mj,,, (13)
Moy (Em) = (M2, — Mi,)E + (MI, — Miy)n + My, where %)
(ML, My, ML) =ME=0,1=0), (1)

i, M), MY =mME=1n=0), (10

(ME M MBY = M@E=0,7=1). 17

When the components of M (Eqs. 12-14) are inserted into Eq. 11 it is the values
of these components at the nodes (Egs. 15-17) that are held fixed.

Out-of-Plane Contribution to the Shell Geometric Stiffness Matrix.

This section will derive the out-of-plane geometric stiffness matrix for the plate
along the same lines and subsequently present a combined out-of-plane contribution.
The derivation starts with the change in a vector G, due to a small rotation that is giv-
en by Goldstein (1950) as

dG = w X G, (18)

where w is the rigid body rotation vector due to
changes in the geometry. In terms of joint displace-
ments with respect to the local coordinate system,
two components 8 and -, of the rigid body rotation
are obtained from Figure 4. The third component is Fig. 4. A triangular finite element
chosen for the plate arbitrarily, as the local z-rotation in its coordinate system

of node i. Recall that for the membrane this compo-

nent is included in the in-plane contribution:

c—e Cc 1 a a
Wyr = ; (61')2’ - 2(6]')2/ + Z(Sm)z’; wyr = Z(Si)z’ + Z (6].)2’ Wz = eiz’ (19)
where (8,), is the displacement in the local (primed) z-direction of node r-
At each node, the forces, moments and rotations may be written as
B = E k's My = Mpyl' + Myyj' + Mypk's 0 = 0,0l + wyrj' + w0k

for » =i, j, m and the changes in the force and moment vectors are given in more de-

tail as
0 FE, 0](wx
dF, = —E.xw=|-E, 0 0]|{wyt, (20)
0 0 ol\w,
0 MTZ _Mry (j)xl
dM, = —M, X w = |—M,, 0 M, {w_’y’}. (21)
Mry _er 0 Wy!
The out-of-plane stiffness contribution of the plate is now obtained as:
Fi di
(dFpiare = [Kelop ™ 8¢ = —F*xw = pi [[A A Am]{djr, (22)
F™ dm
(Fy g 0 R0
| M: | | -E. 0 0 |
F; [ 0 0 0 |
e — 7\ pr —
where F¢ = { M, }, F'=1 o My, M| (23)
| Fm | |_Mrz 0 er |
kaJ l ry _er 0 J
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Now w can be described in terms of the displacement vector as:

d;
w=A48°=[A;i 4 Anl{d}, (24)
dm
where
[ _e~¢ 1
|0 0 ae 0 0 OI
(4) = 1 0 0 ol
Y100 3 I (25)
l0 0 0 0 O 1J
. ]
00 = 0 0 0
A4)=lo o % o o of (26)
0 00 0 0 ol
0 0 1/a 0 0 O
A)=lo o o 0 0 of (27)
0 00 0 0 O
((67).
((51'),5" (5]) f(5m)x”
8y ( J )Y’ (Om)y
(8, 8;), (Bm)

d d;} = Z 4 4d =4 Z 5 {dyy =1, ™7 . 28
an { l} (ei)x’ { ]} (ej)x, { m} (em)x’ ( )
(61, )., (Om)yr
\(6;), y \(Om)

L(6)),,

Carrying out Eq. 22 for the plate and adding the out-of-plane contribution to the
geometric stiffness matrix, in the local coordinate system more explicitly (adjusted to
18 DOF's) for the membrane, results in the following out-of-plane shell geometric
stiffness matrix with respect to the local coordinate system:

(4); (A), (A3
K1k = (4), (4), (4), (29)
(Am)l (Am)z (Am)B

where
(Ar)lz 0 O 1
00 a 00 0 Oofrooo
g 0 0 0
00 b, 000 | 00 B 00 0
{00 a 000 | (o 4)= ' NEN
= Y 00 h 0 0 0
00 o 00 My 00 i 00 0
T
[88?88”’5’% 0 0 j, 0 0 o
i
00 0 0 0 0
10 0 k. 0 0 0
1o o A o0 o o
lo o 1. o o o
lo 0 m, 0 o ol
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(F) x' .

e _ — Ry e

c
aT':_(FT')y’ ae e JﬁT‘:_(FT‘)y’;_ Jllr'_ a )] T T e )
b. =F g _MTZ. d. =M e-¢. _Mry. e-¢ M’”x.
r — I'rz ae:cr_e: r — Mrz ae:mr_a:er_ ry ae_e:
Frg _ c . My, c .
fr__j: r_Frz;: hy = e ' T Mrz;:
jr=—-M i'k — &'l — M,
r rzae: r a’ r a

Conclusions: The theoretical approach of the buckling and strength analyses of
the sinusoidal velaroidal shell is worked out using the finite element method. The in-
plane and the out-of-plane shell geometric stiffness matrices with respect to the local
coordinate system are obtained. This result gives a possibility of further numerical
strength and buckling analyses of the sinusoidal velaroidal shells.
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K PACYETY HA YCTOMUYUBOCTH B TEOMETPUYECKH! HEJIMHEVMHON
INOCTAHOBKE OBOJIOYEK B BUJIE CUHYCOHJAJIBHOI'O BEJIAPOUJIA

XXWUJIb-YJIBE MATEGE, C.JI. IIAMBUHA, JIAY TBEKOJIO
Poccuiickuit ynueepcumem opyosicovl Hapooos, Mockea

B crathe paccmarpuBaercs pacdeT Ha MPOYHOCTh M YCTOWYMBOCTH B T€OMETPUUECKOM
HEJIMHEHHOM MOCTaHOBKE JUIsI CHHYCOHMIAIBHBIX BEaPOMIAIBHBIX 000J0YEK MO IeHCTBHEM
COOCTBEHHOT0 Beca ¥ paBHOMEPHO paclpeeeHHON Harpy3ku. [IpuBOIUTCS KpaTKas UCTOPHUS
MIPUMEHCHUS METOJ[a KOHEYHOI'O DJIEMEHTA UIS M3YYCHUS MOTEPH YCTOHYUBOCTU OOOJIOYKH.
MeToa KOHEUHOr0 3JIEMEHTa UCIONB3yeTCS B MAaTPUYHON (HOPMYITHPOBKE. DJacTUYHAS MaT-
pHILIa JKECTKOCTH B JIOKAJIbHOW CHCTEME KOOpPAWHAT MEMOPAHHOTO AJIEMEHTA OIpPEIessIeTCs B
obmem Bupe. [Tomydena MaTpuna reoMeTpHYECKOH KECTKOCTH BHE TUNTOCKOCTH JUISI IUTACTHHBI
BJIOJIb T€X K€ JIMHUH.

KJIFOYEBBIE CJIOBA: cunycoumanbHbIC BelapoWIalbHBIC O00OJIOUKH, pacdyeT Ha yc-
TOMUMBOCTh B HETMHEWHOW MOCTaHOBKE, JIMHEHHAs MaTpHIAd YIPYTro# KeCTKOCTH, HOpMaJlb-
Has KECTKOCTh, TeOMETPUYECKasi MaTPHIIA KECTKOCTH.
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