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We consider the anisotropy properties of a background radiation in the fractal cosmological
model. The space of this model includes self-similar domains. The metric tensors of any two
domains are connected by the discrete scaling transformation. Photons of the background
radiation cross the domain and their energies change. Any observer receives these photons
from different domains and detects spots with different brightness. The power spectrum of
the brightness anisotropy of the background radiation in the fractal cosmological model is
calculated. It is shown this spectrum is closed to the observed angular power spectrum of
the SDSS-quasar distribution on the celestial sphere. Only qualitatively it conforms to the
angular power spectrum of CMB (WMAP-7).
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1. Introduction

We call the fractal properties of the large-scale galaxy distribution and the CMB
angular anisotropy by the fractal properties of the observable Universe. We have ana-
lyzed the fractal properties in our papers [1–3] (see references there and the excellent
review in book [4]). We adduce here some power-laws indicating the fractality.

– The correlation dimension characterizes galaxy clumping degree and difference
of the galaxy distribution from a homogenous and isotropic one. For example,
the dependence of a SDSS-quasar number 𝑁 (𝑟) in a sphere on its radius r is
described by a power-law [3]:

𝑁 (6 𝑟) ∼ 𝑟𝑑𝑐 , (1)

where the exponent is the correlation dimension, it equals 𝑑𝑐 ≈ 2.17.
– The angular correlation function 𝜔 (𝜗) and the angular power spectrum 𝑢𝑙 of the

SDSS-quasar distribution approximate to power-laws at the average [3]:

𝜔 (𝜗) ∼ 𝜗−1.08, (2)

𝑢𝑙 ∼ 𝑙−1.08, (3)

where 𝑙 is a multipole moment number in expansion of the quasar distribution in
spherical functions in a SDSS-survey part of the celestial sphere.

– Large-scale quasar clumps are discovered in the SDSS-quasar distribution. The
relation between a number of clumps 𝑁 (𝜗𝑐) and their angular size 𝜗𝑐 is charac-
terized by a power-law [3]:

𝑁𝑐 ∼ 𝜗𝑐−2.02. (4)

– The angular power spectrum of the CMB temperature fluctuations according to
WMAP-7 data approximates to a power-law at the average [3]:

𝐶𝑙 ∼ 𝑙−1.74. (5)
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Power-laws (1)–(5) are considered to be indications of fractality because they may
be interpreted through geometrical self-similarity of quasar clumps. For example, let
angular sizes of clumps form a geometric progression

𝜗𝑖 = 𝑞𝜗𝑖−1, (6)

where 𝑞 < 1 is a progression quotient. Then a number of quasar clumps with sizes
𝜗𝑖 ≥ 𝜗𝑛 = 𝜗0𝑞

𝑛−1 satisfies the dependence (4):

𝑁𝑛 =

𝑛∑︁
𝑖=1

𝑁𝑖 ∼
𝑛∑︁
𝑖=1

𝜗−𝑑𝑖 = 𝜗−𝑑0

𝑞−𝑑𝑛 − 1

𝑞−𝑑 − 1
≈
(︀
𝜗0𝑞

𝑛−1
)︀−𝑑

= 𝜗−𝑑𝑛 .

The correlation dimension value 𝑑 ≈ 2.02 for the size distribution of quasar clumps
is compared to that of polygonal path of Brownian particle (length distribution of seg-
ments). This analogy indicates that, possibly, in quasar epoch the large-scale structure
was composed of assembly of weakly interacting spatial regions. Quasar clumps dis-
covered in our paper [3] are physically self similar and they mark these spatial regions.

Sizes of any two regions are related by a scale transformation:

𝑟𝑖 = 𝑞𝑟𝑖−1. (7)

Transformation (7) is an example of geometric self-similarity which is characteristic for
mathematical fractals. Note that scale transformation (7) is discrete. In framework
of field theory, this is a global transformation as opposed to local ones described by
functions of spatial coordinates.

Discovered fractal properties (1)–(5) must be taken into account when formulating
a theory of the large-scale structure formation in framework of the general relativity.
They indicate that in this theory we must use solutions of Hilbert-Einstein equation
which are invariant under discrete scale transformations of space–time metric.

The gravity theory in Riemannian spaces is known not to be invariant under local
scale coordinate transformations of the Weyl group (conformal transformations) [5,6]:
local interval transformation

d𝑠2 → 𝜎 (𝑥) d𝑠2.

In our paper [7] the solution of Hilbert-Einstein equation and Lagrange’s equation
for a charged scalar meson matter field is constructed. The meson field in a field
theory is described by a complex field 𝜓 with a rotary symmetry

𝜓𝜓* = Ψ2 = const, (8)

where the asterisk denotes complex conjugation and Ψ is the field amplitude related
to the field charge 𝑄 ∼ Ψ2). In this case, Einstein’s and Lagrange’s equations are

satisfied for the class of fields 𝜓 and 𝜓 of the form 𝜓 = Ψe𝑖𝜙 and 𝜓 = Ψ̃e𝑖𝜙 which
possess constant energy densities and related by the scale transformation (scaling):

Ψ↔ 1

𝛾
Ψ̃, 𝜙↔ 𝛾𝜙, (9)

where 𝛾 is a numerical transformation parameter.
Field energy density and space–time metric 𝑔𝑚𝑛 (𝜓) allow the discrete transforma-

tion:

𝐸 ↔ 1

𝛾2
𝑈0

𝑈̃0

𝐸̃,

𝑔𝑚𝑛 (𝜓)↔ 𝛾2
𝑈̃0

𝑈0
𝑔𝑚𝑛

(︁
𝜓
)︁
,
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where 𝑈0 and 𝑈̃0 are constant field potential parameters, 𝑈 = 𝑈0𝜓𝜓
* and 𝑈̃ =

𝑈̃0𝜓𝜓
*. Therefore, space–time domains with field values related by the scaling (9)

have geometrically similar metrics which differ in a constant factor only.

An obvious Newtonian analogy may be cited here. Let’s consider two spherically
symmetric bodies with masses 𝑚1 and 𝑚2. They produce gravity fields 𝜙1 ∼ 𝑚1 / 𝑟
and 𝜙2 ∼ 𝑚2 / 𝑟. Their spherical equipotential surfaces are geometrically similar
and differ in radius of curvature only: the greater mass the less radius of curvature.
Lengths of segments on the equipotential surfaces of these two fields are related by a
discrete scaling. A transformation parameter of the scaling equals ratio of the bodies’
masses.

Space–time geometry of the fractal cosmological model permits existence of frac-
tal properties of the matter distribution which analogous to the observable fractal
properties of the large-scale structure of the Universe (1)–(5).

Calculation of the power spectrum of the background radiation within framework
of the fractal cosmological model [7, 8] is performed in this paper.

2. Transfer of Light Signals

A dynamic system of gravity and complex 𝜓 fields is described by Einstein–Hilbert
action

𝑆 = − 𝑐3

16𝜋𝐺

∫︁ (︂
𝑅− 8𝜋𝐺

𝑐4
𝐿

)︂√
−𝑔 d4𝑥,

where 𝑅 is scalar curvature, 𝑔 < 0 is determinant of metric tensor 𝑔𝑚𝑛, space–time
interval is d𝑠2 = 𝑔𝑚𝑛d𝑥

𝑚d𝑥𝑛, indices take values 0, 1, 2, 3, metric signature is (+ −
−−). We use the following form of the complex field Lagrangian:

𝐿 =
1

ℎ𝑐

(︂
𝑔𝑚𝑛

𝜕𝜓

𝜕𝑥𝑚
𝜕𝜓*

𝜕𝑥𝑛
− 𝑈 (𝜓𝜓*)

)︂
, (10)

where 𝑈 (𝜓) is the field potential, ℎ is Planck’s constant, 𝑐 is light velocity. Hereafter,
the field dimension is [𝜓] = erg, the contravariant metric tensor dimension is [𝑔𝑚𝑛] =
cm−2. This field possess the symmetry (8). Its Lagrange equation is

1√
−𝑔

𝜕

𝜕𝑥𝑛

(︂√
−𝑔𝑔𝑚𝑛 𝜕𝜓

𝜕𝑥𝑚

)︂
= − 𝜕𝑈

𝜕𝜓* . (11)

In Einstein’s equation

𝑅𝑚𝑛 −
1

2
𝑅𝛿𝑚𝑛 = 𝜅𝑇𝑚𝑛 (12)

the energy-momentum tensor of the complex field equals to

𝑇𝑚𝑛 =
𝜕𝜓

𝜕𝑥𝑛
𝜕𝐿

𝜕
(︁
𝜕𝜓
𝜕𝑥𝑚

)︁ +
𝜕𝜓*

𝜕𝑥𝑛
𝜕𝐿

𝜕
(︁
𝜕𝜓*

𝜕𝑥𝑚

)︁ − 𝛿𝑚𝑛 𝐿 =
1

ℎ𝑐
𝑔𝑚𝑝

(︂
𝜕𝜓

𝜕𝑥𝑝
𝜕𝜓*

𝜕𝑥𝑛
+

𝜕𝜓

𝜕𝑥𝑛
𝜕𝜓*

𝜕𝑥𝑝

)︂
− 𝛿𝑚𝑛 𝐿,

where 𝑅𝑚𝑛 is Ricci tensor, 𝜅 = 8𝜋𝐺 / 𝑐4 is Einstein’s gravity constant, 𝐺 is Newton’s
gravity constant, 𝛿𝑚𝑛 is the Kronecker delta.

Following form of potential is used further:

𝑈 = 𝑈0𝜓𝜓
*. (13)
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One can ascertain through simple but rather cumbersome computations that La-
grange’s equation (11) with potential (13) is satisfied for the solution:

𝜓 = Ψe𝑖𝜙, 𝜓* = Ψe−𝑖𝜙,

Γ𝑙𝑚𝑛 =
1

𝑈0

𝜕2𝜙

𝜕𝑥𝑚𝜕𝑥𝑛

(︂
𝑔𝑙𝑝

𝜕𝜙

𝜕𝑥𝑝
+ 𝑎𝑙

)︂
,

𝑚𝑛 =
1

𝑈0

(︂
4
𝜕𝜙

𝜕𝑥𝑚
𝜕𝜙

𝜕𝑥𝑛
+

𝜕𝜙

𝜕𝑥𝑚
𝑎𝑛 +

𝜕𝜙

𝜕𝑥𝑛
𝑎𝑚

)︂
,

(14)

where the field phase 𝜙 (𝑥𝑚) is a differentiable function. Hereafter, indices are raised
and lowered with the metric tensor, indices appearing twice in a single term imply sum-
ming over its values, semicolon denotes covariant differentiation, Γ𝑙𝑚𝑛 are Christoffel
symbols.

Derivative
𝜕𝜙

𝜕𝑥𝑚
and covariant vector 𝑎𝑚 satisfy equations:

𝑔𝑚𝑛
𝜕𝜙

𝜕𝑥𝑚
𝜕𝜙

𝜕𝑥𝑛
= 𝑈0, 𝑔𝑚𝑛

(︂
𝜕𝜙

𝜕𝑥𝑚

)︂
;𝑛

= 0, (15)

𝑎𝑚;𝑙 = 0, 𝑎𝑚𝑎
𝑚 = −3𝑈0,

𝜕𝜙

𝜕𝑥𝑚
𝑎𝑚 = 0.

Covariant 𝑎𝑚 and contravariant 𝑎𝑘 vectors satisfy equations:

𝜕𝑎𝑚
𝜕𝑥𝑙

= −3 𝜕2𝜙

𝜕𝑥𝑚𝜕𝑥𝑙
,

𝜕𝑎𝑛

𝜕𝑥𝑚
𝑎𝑛 = 3𝑎𝑛

𝜕2𝜙

𝜕𝑥𝑛𝜕𝑥𝑚
. (16)

One can ascertain through a substitution that the following equalities are satisfied for
the solution (14)–(16):

𝜕𝑔𝑚𝑛
𝜕𝑥𝑙

= 𝑔𝑘𝑚Γ
𝑘
𝑛𝑙 + 𝑔𝑘𝑛Γ

𝑘
𝑚𝑙, Γ𝑚𝑘𝑙 =

1

2
𝑔𝑚𝑛

(︂
𝜕𝑔𝑛𝑘
𝜕𝑥𝑙

+
𝜕𝑔𝑛𝑙
𝜕𝑥𝑘

− 𝜕𝑔𝑘𝑙
𝜕𝑥𝑛

)︂
, 𝛿𝑛𝑚 = 𝑔𝑛𝑙𝑔𝑙𝑚.

Functions
𝜕𝜙

𝜕𝑥𝑚
, 𝑎𝑚, 𝑎

𝑚 are derived from equations (11) and (16).

The solutions (14) are shown in paper [7] to satisfy Hilbert-Einstein equation.

The Christoffel symbols and the Ricci tensor don’t change under the discrete scal-
ing (9). The 𝑎𝑛 vector, metric tensor, and components of the energy-momentum and
Ricci tensors are multiplied by constant factors:

𝑎𝑛 ↔ 𝛾𝑎̃𝑛,

𝑔𝑚𝑛 (𝜓)↔ 𝛾2
𝑈̃0

𝑈0
𝑔𝑚𝑛

(︁
𝜓
)︁
,

𝑅𝑚𝑛 ↔
1

𝛾2
𝑈0

𝑈̃0

𝑅̃𝑚𝑛 , 𝑇𝑚𝑛 ↔
1

𝛾2
𝑈0

𝑈̃0

𝑇𝑚𝑛 .

(17)

Therefore, Einstein’s and Lagrange’s equations are invariant under the discrete scal-
ing (9).

The Lagrangian (10) equals to zero for the solution (14), whereas energy density
is positive:

𝐸 =
1

ℎ𝑐

(︂
𝑔𝑚𝑛

𝜕𝜓

𝜕𝑥𝑚
𝜕𝜓*

𝜕𝑥𝑛
+ 𝑈 (𝜓𝜓*)

)︂
=

2

ℎ𝑐
𝑈0Ψ

2 > 0. (18)
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The energy density (18) is constant, therefore the solution (14) corresponds to a sta-
tionary field condition. Space–time volumes with a structure of the solution (14) type
are similar to each other and form a fractal set. Stationarity and fractality of so-
lution (14) are consequences of the symmetry (8). Stationarity permits to refer this
solution to the class of particle-like solution of the general relativity. Fractality implies
that the solution corresponds to a set of noninteracting self-similar particles.

The phase path of the fields 𝜓 and 𝜓* is a circle.

𝜓𝜓* = 𝜓1
2 + 𝜓2

2 = Ψ2,

𝜓 = 𝜓1 + 𝑖𝜓2, 𝜓* = 𝜓1 − 𝑖𝜓2.

The function 𝜙 is a degree of rotation round the circle. Length of a circle arc i.e.
interval of set {𝜓1, 𝜓2} equals to

d𝐹 2 = (d𝜓1)
2
+ (d𝜓2)

2
= d𝜓d𝜓* = Ψ2 𝜕𝜙

𝜕𝑥𝑚
𝜕𝜙

𝜕𝑥𝑛
d𝑥𝑚d𝑥𝑛. (19)

Analyzing equations (14), (16) and formula (19) one can ascertain that there is
a vector 𝑎𝑚 for which the metric 𝑔𝑚𝑛 corresponds to a Riemannian space which is
a tangent space of the phase path (8). This Riemannian space is an image of the
phase space of the meson field and gravitational self-action of the meson field is a
consequence of the symmetry (8).

Light signals transfer along isotropic geodesics of space–time (14). An isotropic
vector satisfies equations:

𝑝𝑚𝑝
𝑚 = 0, 𝑝𝑚;𝑛 = 0.

Under solution (14) these equations are satisfied by the vector

𝑝𝑚 =
√
3
𝜕𝜙

𝜕𝑥𝑚
+ 𝑎𝑚. (20)

Under the discrete scaling (9) this vector transforms by the rule:

𝑝𝑚 ↔ 𝛾𝑝𝑚. (21)

Therefore, an isotropic vector remains isotropic under the scaling (9).

3. The Power Spectrum of a Background Radiation

Self-similarity of space–time domains described by the solution (14) permits con-
sideration of an assembly of such domains because transition from any domain to an-
other resolves itself into dilatation or compression of an interval. Direction of isotropic
geodesics doesn’t change. We consider this assembly of self-similar space–time domains
as the fractal structure of the cosmological model.

Let’s consider transfer of photons of a background radiation within such fractal
structure. We take into account gravitational influence of every domain only and leave
out of account direct interaction with substance (absorption and scattering). In this
case, energy of transferring photon changes due to gravitational frequency shift. When
the photon is approaching a gravitating body its frequency is rising, when moving away
the frequency is dropping.

Let the background radiation is homogeneous and isotropic, and an observer re-
ceives photons which passed through the fractal structure (Fig. 1). Brightness differs
from one domain to another because energy of photons changes being multiplied by
a scaling factor for each domain according to the expression (21). Therefore, the
observer notices spots of different brightness in the distribution of the background
radiation brightness on the celestial sphere.
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Figure 1. Receiving of photons by an observer from different space domains

Note that the relation of the CMB anisotropy with possible existence of spots of
different brightness was discussed long ago [9, 10].

Compare the brightness distribution in the 𝑗-th spot with a distribution of points
with angular distances to the spot center

𝜗 = arccos (cos 𝛿𝑗 cos 𝛿 cos (𝛼− 𝛼𝑗) + sin 𝛿𝑗 sin 𝛿),

where (𝛿, 𝛼) and (𝛿𝑗 , 𝛼𝑗) are declinations and right ascensions of a point and of the
spot center respectively. The whole spot is described by Legendre polynomial of order
𝑙𝑗 and its representation through spherical harmonics (the addition theorem):

𝑃𝑙𝑗 (cos𝜗𝑗) =
4𝜋

2𝑙𝑗 + 1

𝑚=+𝑙𝑗∑︁
𝑚=−𝑙𝑗

𝑌
𝑙𝑗
−𝑚 (𝑗)𝑌 𝑙𝑗𝑚 (𝛼, 𝛿) . (22)

The multipole number 𝑙𝑗 and the spot’s size 𝜗𝑗 are related by the expression

𝜃𝑗 ≈
𝜋

𝑙𝑗
=

180∘

𝑙𝑗
. The polynomial (22) is of the bell shape in the range 0 6 𝜗𝑗 6 𝜃𝑗

with maximum equal to 1 when 𝜗𝑗 = 0.

Summarized brightness distribution of the background radiation may be expressed
now as

𝐹 (𝛼, 𝛿) =
𝑁∑︁
𝑗=1

𝛾𝑗𝑃𝑙 (𝑗, 𝛼, 𝛿) , (23)

where the scaling factor 𝛾𝑗 takes into account change of photons’ energy when leaving
the 𝑗-th domain. For determination of the power spectrum of the background radiation
brightness distribution anisotropy the function (23) should be expanded in a spherical
harmonics series:

𝐹 (𝛼, 𝛿) =
∑︁
𝑚,𝑙

𝑎𝑚𝑙𝑌
𝑙
𝑚 (𝑗, 𝛼, 𝛿) .

The power spectrum is a function

𝐶𝑙 =
1

2𝑙 + 1

𝑚=𝑙∑︁
𝑚=−𝑙

|𝑎𝑚𝑙|2 .
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Using definitions (22) and (23) we can determine the serial expansion coefficients 𝑎𝑚𝑙:

𝑎𝑚𝑙 =
4𝜋

2𝑙 + 1

𝑁∑︁
𝑗=1

𝛾𝑗

𝑚=𝑙∑︁
𝑚=−𝑙

𝑌 𝑙−𝑚 (𝑗) .

The normalization condition for the spherical harmonics on a whole sphere is used
here: ∫︁

𝑌
𝑙𝑗
−𝑚𝑌

𝑙
𝑚 dΩ = 𝛿𝑙𝑙𝑗 .

In the simplest case of symmetric spots, the weight factors 𝛾𝑗 are proportional to

the spot’s angular size, 𝛾𝑗 ∼ 𝜃𝑗 ≈
𝜋

𝑙𝑗
, and determine the dependence of the expansion

coefficients on the multipole numbers: 𝑎𝑚𝑙 ∼
𝑁∑︁
𝑗=1

𝛾𝑗 ∼
𝑁∑︁
𝑗=1

1

𝑙𝑗
. In this case, the power

spectrum may be close to the power-law:

𝐶𝑙 ∼
1

2𝑙 + 1

⎛⎝ 𝑁∑︁
𝑗=1

1

𝑙𝑗

⎞⎠2

∼ 𝑙−1. (24)

The model power spectrum (24) closely corresponds to the power spectrum of
SDSS-quasars (3).

4. Conclusion

The main result of the present work is computation of a background radiation
power spectrum within the fractal cosmological model. The spectrum is shown to be
close to the observable angular power spectrum of the SDSS-quasar distribution on
the celestial sphere. It differs from the average power spectrum of the observable CMB
anisotropy (WMAP-7). This fact will be a subject of investigation in further works.
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Рассматривается анизотропия фонового излучения во фрактальной космологической
модели. Пространство этой модели состоит из самоподобных областей. Метрические тен-
зоры любых двух областей связаны дискретным масштабным преобразованием (скей-
лингом). Фотоны фонового излучения проходят через домены, и их энергии изменя-
ются. Наблюдатель, принимающий эти фотоны от разных доменов, обнаружит пятна
различной яркости. Вычислен угловой спектр мощности анизотропии яркости фонового
излучения в рамках фрактальной модели. Показано, что этот спектр близок к наблю-
даемому угловому спектру мощности распределения SDSS-квазаров по небесной сфере.
Лишь качественно этот спектр согласуется с угловым спектром мощности реликтового
излучения (WMAP-7).

Ключевые слова: комплексное поле, вращательная симметрия, фрактальные свой-
ства крупномасштабной структуры, фрактальная космологическая модель, фоновое из-
лучение.




