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Abstract. Solutions of many applied Cauchy problems for ordinary differential
equations have one or more multiple zeros on the integration segment. Examples are
the equations of special functions of mathematical physics. The presence of multiples
of zeros significantly complicates the numerical calculation, since such problems
are ill-conditioned. Round-off errors may corrupt all decimal digits of the solution.
Therefore, multiple zeros should be treated as special points of the differential
equations. In the present paper, a local solution transformation is proposed, which
converts the multiple zero into a simple one. The calculation of the latter is not
difficult. This makes it possible to dramatically improve the accuracy and reliability
of the calculation. Illustrative examples have been carried out, which confirm the
advantages of the proposed method.

Key words and phrases: ordinary differential equations, Cauchy problem, multiple
zero, solution transformation

1. Introduction

Consider the Cauchy problem for an ordinary differential equation (ODE)

𝑑𝑢/𝑑𝑡 = 𝑓(𝑢, 𝑡), 𝑢(0) = 𝑢0. (1)

The solution of many such problems has one or more multiples of zeros
inside the integration segment. Examples are special functions: elliptic
Weierstrass functions [1], 𝜃-function [2], derivatives of cylindrical functions [3],
and a number of others.
To calculate them, power series, Fourier series or direct numerical integration

of the original equation [2] are used. The latter method seems to be the
most versatile. However, the numerical calculation of such problems faces
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a typical difficulty. If the grid node exactly coincides with the position of
the solution zero and the order of accuracy of the scheme does not exceed
the multiplicity of the zero, then the further numerical solution identically
equals and calculation becomes impossible. If the grid node does not coincide
with the soluton zero, but is close to it, then the numerical solution becomes
so small in absolute magnitude that it turns out to be comparable to unit
round-off errors.

After passing a multiple of zero, the integral curves diverge rapidly, so the
contribution of rounding errors increases by many orders of magnitude. Thus,
passing a multiple of zero “removes” several significant digits from the solution.
The more multiples of zeros fall on the integration segment, the greater the
loss of accuracy. Such tasks are called ill-conditioned [4].

Therefore, we propose to consider multiple zeros in the solution of differential
equations as special points along with poles and root singularities. We call
them non-singular special points.

In the present paper, a new method for calculating problems with non-
singular features is proposed. It consists of two stages:

1) numerical detection of the nearest zero, calculation of its position and
multiplicity;

2) local transformation of the solution, which converts a multiple zero into
a simple one. The calculation of such a solution is not difficult.

The method is generalized to ODE systems. Examples illustrating the
advantages of the proposed approach are given.

2. Detection of the nearest zero

Let the nearest zero of the solution 𝑢(𝑡) be located at the point 𝑇 and
has a multiplicity 𝑞. The values of 𝑞 and 𝑇 are unknown in advance. Let
us introduce the grid 𝑡𝑛, 0 ⩽ 𝑛 ⩽ 𝑁, ℎ = 𝑡𝑛+1 − 𝑡𝑛 for the independent
variable. Let the calculation be carried out according to some difference
scheme. The numerical solution is denoted by 𝑢𝑛. Obviously, the algorithm
for investigating the nearest zero can use only those values of 𝑢𝑛 for which
𝑡𝑛 < 𝑇. Otherwise, the accuracy of such a study deteriorates dramatically.
Earlier in [5, 6], an algorithm for numerical detection of the nearest pole in

the solution of the ODE was proposed. A zero can be considered as a pole of
negative order. Therefore, we can apply this technique to the study of zeros.
Let us describe the corresponding procedure. Near zero, the representation is
valid

𝑢 = 𝐶𝑞(𝑇 − 𝑡)𝑞 + 𝐶𝑞+1(𝑇 − 𝑡)𝑞+1 + … . (2)

Let us neglect the second and subsequent terms and differentiate this equality.
Taking into account (1), we get

𝑓 = − 𝑞𝑢
𝑇 − 𝑡

. (3)
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Let us write (3) in nodes 𝑛 and 𝑛 + 1. We obtain a system of equations
with respect to the quantities 𝑞 and 𝑇. Its solution has the form

𝑞𝑛 =
𝑡𝑛 − 𝑡𝑛+1

𝑢𝑛/𝑓𝑛 − 𝑢𝑛+1/𝑓𝑛+1
, 𝑇𝑛 = 𝑞𝑢𝑛

𝑓𝑛
+ 𝑡𝑛. (4)

Although the exact value of 𝑞 is an integer, the calculated 𝑞𝑛 turns out to be
a float-point number.
The formulas (4) are actually a difference scheme for 𝑞 and 𝑇. Its error

consists of two factors: the error of the original difference scheme for the
problem (1) and the error introduced by discarding the second and subsequent
terms in (2). The first factor can be reduced by conducting a global thickening
of the grid ℎ → 0. The second factor decreases with the tendency of 𝑡𝑛 → 𝑇
even if the grid step is fixed.
It is not difficult to show that if the calculated values of 𝑞𝑛 and 𝑇𝑛 tend

to be constant when the number of the current node 𝑛 increases, then the
detected singular point is a multiple of zero. The justification of this statement
reproduces almost verbatim the proof of Theorem 1 from [7].

3. Transformation of the solution

𝑤-transformation. Suppose, during the calculation using the procedure
described above, a multiple zero of the solution 𝑢(𝑡) is detected. This means
that for some 𝑛, the next change in the calculated 𝑞𝑛 and 𝑇𝑛 is quite small:
|𝑞𝑛 − 𝑞𝑛−1| < 𝜀, |𝑇𝑛 − 𝑇𝑛−1| < 𝜀, where 𝜀 is some small number. The number
of the node where this condition is met is denoted by 𝑛∗.
Round 𝑞𝑛∗

to an integer and introduce a new unknown function

𝑤 = sign (𝑢)|𝑢|1/𝑞. (5)

It is not difficult to make sure that 𝑤(𝑡) satisfies the problem

𝑑𝑤
𝑑𝑡

= 𝑤1−𝑞

𝑞
𝑓(𝑤𝑞, 𝑡), 𝑤(𝑡𝑛∗

) = sign (𝑢𝑛∗
)|𝑢𝑛∗

|1/𝑞. (6)

The function 𝑤 has a simple zero at the point 𝑇. Numerical calculation of
such a solution is not difficult.
Starting from the moment 𝑡𝑛∗

we solve the problem (6) according to the same

scheme as the original problem. Simultaneously, at each step, we calculate the
solution 𝑢𝑛 = (𝑤𝑛)𝑞 both before and after the zero. After passing 𝑤 through
zero, we return to the calculation of the original problem (1). Similarly, the
calculation of the second and subsequent zeros is carried out.

𝜏-transformation. The geometric interpretation of the transformation de-
scribed above is that the multiple zero of the function 𝑢 becomes a simple
zero of the function 𝑤. The same result can be achieved by introducing
a transformation of the independent variable instead of the solution.
Let us calculate 𝑞 (rounded to an integer) and 𝑇. Let us introduce a new

argument 𝜏 = (𝑇 − 𝑡)𝑞. The solution 𝑢(𝜏) has a simple zero at the point 𝑇.
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In the new argument, the equation (1) takes the form

𝑑𝑢
𝑑𝜏

= −1
𝑞

𝜏1/𝑞−1𝑓(𝑢, 𝑇 − 𝜏1/𝑞). (7)

The calculation is carried out in the same way as described in the previous
paragraph.

4. Generalizations

ODE systems. It is easy to generalize the described approach to the case
of an ODE system of the order of 𝐽

𝑑u
𝑑𝑡

= f(u, 𝑡), u(0) = u0, (8)

where u = {𝑢1, 𝑢2, … , 𝑢𝐽}, f = {𝑓1, 𝑓2, … , 𝑓𝐽}.
Let several components of the solution contain multiple zeros located in

the general case at different points. Then a representation similar to (2) is
valid for each of these components. For each component of the solution, we
conduct the study described in section 2. Let the nearest zero be located

in the component 𝑢𝑘; it corresponds to the moment of time 𝑇 𝑘 and has the

order 𝑞𝑘. Let us introduce a replacement (5) for the 𝑘-th component without
changing other components. The resulting system takes the form

𝑑𝑤𝑘

𝑑𝑡
= 1

𝑞𝑘 [𝑤𝑘]1−𝑞𝑘𝑓𝑘(𝑢1, 𝑢2, … , 𝑢𝑘−1, [𝑤𝑘]𝑞𝑘 , 𝑢𝑘+1, … , 𝑢𝐽),
𝑑𝑢𝑗

𝑑𝑡
= 𝑓𝑗(𝑢1, 𝑢2, … , 𝑢𝑘−1, [𝑤𝑘]𝑞𝑘 , 𝑢𝑘+1, … , 𝑢𝐽), 1 ⩽ 𝑗 ⩽ 𝐽, 𝑗 ≠ 𝑘.

(9)

Let us calculate the system (9) until the component 𝑤𝑘 passes through

zero. Simultaneously with 𝑤𝑘 at each step we calculate 𝑢𝑘 = [𝑤𝑘]𝑞𝑘
. Then we

return to the original system (8) and integrate it, simultaneously conducting
a numerical study of zeros in each component. When the nearest multiple
zero of one of the components is detected, we introduce a system similar
to (9), etc.

Multiple constant. In addition to multiple zeros, similar difficulties are
presented by points where the solution itself is different from zero, and several
first derivatives are zero. Such features are natural to denote as multiple
constants. In the vicinity of such a point, the solution is represented as

𝑢(𝑡) = 𝐴 + 𝐶𝑞(𝑇 − 𝑡)𝑞 + … , (10)

where 𝐴 ≠ 0. The proposed approach can be applied directly to such
problems if the value of 𝐴 is known exactly. To do this, it is enough to make
a transformation

𝑤 = 𝐴 + sign(𝑢)|𝑢|1/𝑞. (11)
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The case when 𝐴 is unknown in advance is particularly difficult. We
have attempted to construct various difference schemes for calculating 𝐴 by
analogy with 2. However, the accuracy of this calculation was insufficient to
construct a transformation of the form (11). Therefore, we leave the case of
the unknown 𝐴 outside the scope of this work.

5. Validation

Test example. As test examples, it is advisable to choose problems with
a known exact solution, which is expressed in elementary functions. This
allows a particularly thorough verification of the numerical method.
Let us set the exact solution

𝑢ex(𝑡) = cos𝑞(𝜋𝑡 + 𝜋/4). (12)

It has zeros of multiplicity 𝑞 at points 𝑇𝑘 = 1/4 + 𝑘, 𝑘 = 1, 2, …. Let us
construct a differential equation for it. There are different ways to do this.
However, an equation with the right-hand side depending only on 𝑡 is of no
interest, since it is solved by quadrature. On the other hand, the right-hand
side, which depends only on 𝑢, also appears to be a special case. Therefore,
we consider a non-autonomous equation

𝑑𝑢
𝑑𝑡

= −𝑞𝜋|𝑢|1−1/𝑞 sin(𝜋𝑡 − 𝜋/4). (13)

The initial condition is set according to (12). The integration segment
0 < 𝑡 < 𝑡max is selected so that it contains a specified number of multiples of
zeros.
Figure 1 shows the field of integral curves for this problem. This graph

illustrates what is said in section 1. The rapid divergence of the integral
curves after each multiple of zero is clearly visible. It is also seen that even
a relatively small change in the initial condition significantly changes the
integral curve.
Along with the equation (13) in the argument “time” 𝑡, the corresponding

system was considered in the argument “arc length of the integral curve” 𝑙
[8, 9]. Recall the formulas for the transition to this argument

𝑑𝑢
𝑑𝑙

= 𝑓
√1 + 𝑓2

, 𝑑𝑡
𝑑𝑙

= 1
√1 + 𝑓2

. (14)

It is easy to see that in this argument the vector of the right parts has
unit length. It is also known [8] that parameterization through the arc length
provides the best conditionality of the problem (in a global sense, i.e. over
the entire segment 0 < 𝑡 < 𝑡max).

Testing methodology. The calculation of the task (13) or (14) is carried
out until the specified time point 𝑡max is reached. Each calculation was carried
out on a set of thickening grids: the first grid contained 𝑁 intervals of length ℎ,
the second had 2𝑁 intervals of length ℎ/2, etc. The error of the numerical
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solution was calculated on each grid as the difference between numerical and
exact solutions

𝛿𝑛 = 𝑢𝑛 − 𝑢ex(𝑡𝑛). (15)

Figure 1. The field of integral curves of the equation (13)

For the problem (14), the exact solution as a function of the arc length
is unknown, so we consider the error according to (15), substituting the
calculated time points 𝑡𝑛 into the exact solution (12).

Method choice. Let us put 𝑡max = 3𝜋/2 ≈ 4.7. Then the segment
0 < 𝑡 < 𝑡max contains 5 zeros of the solution. Let 𝑞 = 3. Let us calculate the
problem (13) using an explicit four-stage Runge–Kutta scheme (ERK4) [10]
using the proposed approach.
Figure 2 shows the error of the obtained solution depending on the number

of grid nodes on a double logarithmic scale. Power convergence 𝛿𝑁 ∼ 𝑁−𝑝

corresponds to a straight line with a slope of −𝑝.
Visually, the error curve decreases and tends to a straight line with a slope

of −4. This corresponds to the theoretical 4th order of accuracy of this scheme.
On excessively detailed grids, the error reaches the value ∼ 10−14 and ceases
to decrease. This corresponds to the background of rounding errors. It can be
seen that they are only 100 times larger than the unit rounding error. This
shows the high reliability of the proposed approach.
For comparison, we performed calculations of this problem without using

the proposed approach. Various schemes were used: the explicit ERK4 scheme,
the explicit-implicit one-step Rosenbrock scheme with complex coefficient
CROS [11], implicit optimal backward Runge–Kutta scheme BORK4 [12,
13] and the explicit Dorman–Prince method with automatic step selection
DoPri5 [14, 15]. The error obtained in these calculations is also shown in
figure 2. It can be seen that the ERK4, CROS and BORK4 schemes without
replacement give approximately the same errors. The rate of their descending
roughly corresponds to the first order of accuracy, which is sharply different
from their theoretical orders of accuracy. The convergence of the DoPri5
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method turns out to be faster, but the accuracy cannot be obtained better
than 10−3.

Figure 2. Errors in the test (13)

Thereby, from figure 2 it can be seen that the proposed approach dramati-
cally increases the accuracy and reliability of the calculation. The problem
under consideration presents a significant difficulty for classical schemes.
However, the proposed approach allows calculations to be carried out even ac-
cording to explicit schemes and to obtain an accuracy not much higher than
the errors of unit round-off error.
Figure 3 shows similar calculations of the problem (14). It is clearly

seen that the ERK4 scheme with the proposed replacement implements the
theoretical order of accuracy and provides excellent accuracy up to ∼ 10−14. In
calculations without the proposed replacement, all schemes give significantly
worse accuracy and do not implement the theoretical order of convergence.

Figure 3. Errors in the test (14)
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6. Conclusion

The test calculations have shown that the proposed approach for numerical
solution of the Cauchy problems with multiple zeros on the integration
segment provides high accuracy and reliability of calculation for a wide
class of problems. At the same time, standard approaches demonstrate
unsatisfactory accuracy. The simplicity of implementation, the possibility of
generalization and use with a large set of numerical schemes make the method
convenient for application to applied problems.
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Численное интегрирование задач Коши
с несингулярными особыми точками

А. А. Белов1, 2, И. В. Горбов1

1Московский государственный университет им. М.В. Ломоносова,
Ленинские горы, д. 1, стр. 2, Москва, 119991, Россия

2 Российский университет дружбы народов,
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Аннотация. Решения многих прикладных задач Коши для обыкновенных диф-
ференциальных уравнений имеют один или несколько кратных нулей на отрезке
интегрирования. Примерами являются уравнения специальных функций матема-
тической физики. Наличие кратных нулей существенно затрудняет численный
расчёт, поскольку такие задачи являются плохо обусловленными. Из-за ошибок
округления в решении может не остаться ни одного верного знака. Поэтому крат-
ные нули следует отнести к особым точкам ОДУ. В данной работе предложена
локальная замена искомой функции, которая преобразует кратный нуль решения
в простой. Расчёт последнего не представляет трудностей. Это позволяет карди-
нально повысить точность и надёжность расчёта. Проведены иллюстративные
примеры, которые подтверждают преимущества предлагаемого метода.

Ключевые слова: обыкновенные дифференциальные уравнения, задача Коши,
кратные нули, преобразование решения


