УДК 517.51

О пространствах Харди

Тиен Зунг Фам

Кафедра математического анализа и теории функций Российский университет дружсбы народов ул. Миклухо Маклая, 6, Москва, Россия, 117198

В работе доказываются теоремы о представлении функций из пространств Харди H^p , $1 и ограниченность оператора Римана–Лиувилля в пространстве <math>\operatorname{Re} H^1$.

Ключевые слова: пространство Харди, оператор Римана-Лиувилля.

1. Введение

Пусть $\mathbb{R} := (\infty, \infty)$, $\mathbb{R}_+ := [0, \infty)$. Пространство Лебега $L^p(\mathbb{R})$ состоит из всех измеримых функций на \mathbb{R} таких, что $||f||_{L^p(\mathbb{R})} := \left(\int_{\mathbb{R}} |f(x)|^p \mathrm{d}x\right)^{\frac{1}{p}} < \infty$. Аналогично определяется пространство $L^p(\mathbb{R}_+)$.

Пространство Харди H^p , $1 \le p < \infty$ состоит из аналитических функций F(z) в верхней полуплоскости ${\rm Im}\, z > 0$, удовлетворяющих условию

$$||F||_{H^p} := \sup_{y>0} \left(\int_{\mathbb{R}} |F(x+iy)|^p dx \right)^{1/p} < \infty.$$
 (1)

Известно [1], что

$$||F||_{H^p} = \lim_{y \to 0} \left(\int_{\mathbb{R}} |F(x+iy)|^p dx \right)^{1/p}$$

и F(x+iy) при $y\to 0$ сходится почти всюду к $f(x)+i\tilde{f}(x)$, где функции f(x) и $\tilde{f}(x)$ принадлежат $L^p(\mathbb{R})$, причём $\tilde{f}(x)$ является преобразованием Гильберта функции f(x). Обратно, для функций вида $f(x)+i\tilde{f}(x)$, где $f(x)\in L^p(\mathbb{R})$ и $\tilde{f}(x)$ преобразование Гильберта f, существует $F\in H^p$ такая, что функция $f(x)+i\tilde{f}(x)$ почти всюду совпадает с предельными значениями F(x+iy) на \mathbb{R} при $y\to 0$ [2, Теорема 103]; [1, Глава 2].

Пусть $f \in L^p(\mathbb{R}_+)$, 1 . Обозначим

$$\hat{f}_c(t) := \frac{2}{\pi} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}_+} f(x) \frac{\sin xt}{x} \mathrm{d}x, \quad \hat{f}_s(t) := \frac{2}{\pi} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}_+} f(x) \frac{1 - \cos xt}{x} \mathrm{d}x, \tag{2}$$

т.е $\hat{f}_c(\hat{f}_s)$ — это косинус-преобразование (синус-преобразование) Фурье функции f. Мы будем называть пару (a,b) функций a(t) и b(t) CS-парой преобразований Фурье, если существует функция $f\in L^p(\mathbb{R}), p\in (1,2]$ такая, что для почти всех $t\geqslant 0$ справедливы равенства

$$a(t) = \hat{f}_c(t), \quad b(t) = \hat{f}_s(t),$$

$$\hat{f}_c(t) = \frac{1}{\pi} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}} f(x) \frac{\sin xt}{x} \mathrm{d}x, \quad \hat{f}_s(t) = \frac{1}{\pi} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}} f(x) \frac{1 - \cos xt}{x} \mathrm{d}x.$$
(3)

В работе [3] мы показали, что если $f \in L^p(\mathbb{R}_+)$, $1 \leqslant p \leqslant 2$, $\alpha > 1/p'$, $p' = \frac{p}{p-1}$, то почти всюду на \mathbb{R}_+ справедливы равенства

$$B_{\alpha}(\hat{f}_c)(x) = H_{\alpha}(f)_c^{\wedge}(x), \quad B_{\alpha}(\hat{f}_s)(x) = H_{\alpha}(f)_s^{\wedge}(x), \tag{4}$$

где операторы Римана–Лиувилля $B_{\alpha}(f)$ и $H_{\alpha}(f)(x)$ имеют вид

$$B_{\alpha}(f)(x) := \frac{1}{x^{\alpha}} \int_{0}^{x} (x-t)^{\alpha-1} f(t) dt, \quad x > 0, \quad \alpha > 0,$$

И

$$H_{\alpha}(f)(x) := \int_{x}^{\infty} \frac{(t-x)^{\alpha-1}}{t^{\alpha}} f(t) dt, \quad x > 0, \quad \alpha > 0.$$

В настоящей работе мы рассматриваем задачу о представлении функций из пространств H^p с помощью CS-пар преобразований Фурье (Теоремы 1 и 2), а также доказываем ограниченность оператора Римана–Лиувилля H_{α} в пространстве $\operatorname{Re} H^1$ (Теорема 3). Теоремы 1–3 дополняют работу Б.И. Голубова [4].

2. Основные результаты

Теорема 1. Пары (a,b) и (-b,a) одновременно являются CS-парами преобразований Фурье тогда и только тогда, когда существует $F(z) \in H^p$, $p \in (1,2]$, такая, что

$$F(z) = \int_{0}^{\infty} (a(t) - ib(t)) e^{izt} dt, \quad \text{Im } z > 0.$$
 (5)

Доказательство. Необходимость. Пусть (a,b) и (-b,a) одновременно являются CS-парами преобразований Фурье, тогда существует f(x) и $g(x) \in L^p(\mathbb{R})$, $p \in (1,2]$ такие что, для почти всех $t \geqslant 0$ $a(t) = \hat{f}_c(t)$, $b(t) = \hat{f}_s(t)$ и $-b(t) = \hat{g}_c(t)$, $a(t) = \hat{g}_s(t)$.

Пусть $\hat{f}(t)$ — преобразование Фурье функции f(t) в $L^p(\mathbb{R}), p \in (1,2]$. Тогда

$$a(t) - ib(t) = \frac{1}{\pi} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}} f(x) \frac{e^{-ixt} - 1}{-ix} \mathrm{d}x = \hat{f}(t).$$

Пусть $\hat{k}(t)$ равна e^{izt} при $t \geqslant 0$ и равна 0 при t < 0. Тогда

$$k(u) = \frac{1}{\pi} \int_{0}^{\infty} e^{izt - iut} dt = \frac{1}{\pi} \frac{1}{i(u - z)}.$$

Применение формулы Парсеваля к (5) даёт

$$F(z) = \int_{0}^{\infty} (a(t) - ib(t)) e^{izt} dt = \frac{-1}{i\pi} \int_{\mathbb{R}} \frac{f(t)}{t - z} dt, \quad \text{Im } z > 0,$$

откуда следует, что

$$-F(z) = (f * P_u)(x) + i(f * Q_u)(x), \quad \text{Im } z > 0,$$
(6)

где z = x + iy и

$$P_y(x) = \frac{1}{\pi} \frac{y}{x^2 + y^2}, \quad Q_y(x) = \frac{1}{\pi} \frac{x}{x^2 + y^2}.$$

Обозначим

$$\Phi(z) := \int_{0}^{\infty} \left(-b(t) - ia(t)\right) e^{izt} dt, \quad \operatorname{Im} z > 0.$$

Аналогично доказательству (6), если $-b(t) = \hat{g}_c(t)$ и $a(t) = \hat{g}_s(t)$, то

$$-\Phi(z) = (g * P_y)(x) + i(g * Q_y)(x), \quad \text{Im } z > 0.$$

Поскольку $b(t) = \hat{f}_s(t)$ и $a(t) = \hat{f}_c(t)$, то

$$-\Phi(z) = (f * Q_y)(x) - i(f * P_y)(x), \quad \text{Im } z > 0.$$

Приравнивая вещественные и мнимые части, находим

$$(f*Q_y)(x) = (g*P_y)(x)$$
 и $(f*P_y)(x) = -(g*Q_y)(x)$.

Отсюда и из (6) вытекает, что

$$-F(z) = (f * P_y)(x) + i(g * P_y)(x),$$

откуда при фиксированном y > 0 находим

$$\left(\int\limits_{\mathbb{R}} |F(x+iy)|^p \mathrm{d}x\right)^{1/p} \leqslant \|f * P_y\|_{L^p} + \|f * Q_y\|_{L^p} = \|f * P_y\|_{L^p} + \|g * P_y\|_{L^p} < \infty.$$

Это значит, что $F(z) \in H^p$.

Достаточность. Пусть $F(z) \in H^p$, $p \in (1,2]$ и

$$h(t) = \begin{cases} a(t) - ib(t), & t \geqslant 0, \\ 0, & t < 0. \end{cases}$$

Тогда

$$F(x+iy) = \int_{\mathbb{D}} h(t)e^{-ty}e^{ixt}dt, \quad \operatorname{Im}(z) > 0.$$

Покажем, что $h(t)e^{-ty}$ есть трансформация Фурье функции F(x+iy), т.е.

$$h(t)e^{-ty} = \frac{1}{2\pi} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}} F(u+iy) \frac{e^{-iut} - 1}{-iu} \mathrm{d}u, \quad \mathrm{Im}(z) > 0.$$
 (7)

Рассмотрим интеграл

$$\int_{\Omega} F(z)e^{-itz}dz,$$

где $\Omega = \{(x,y) : x = \pm a; y = y_1; y = y_2, 0 < y_1 < y_2\} \subset \operatorname{Im}(z) > 0$. Имеем

$$\int_{\Omega} F(z)e^{-itz}dz = \int_{y_1}^{y_2} F(a+iy)e^{-it(a+iy)}dy + \int_{a}^{-a} F(u+iy_2)e^{-it(u+iy_2)}du +$$

$$+\int_{y_2}^{y_1} F(-a+iy)e^{-it(-a+iy)} dy + \int_{-a}^{a} F(u+iy_1)e^{-it(u+iy_1)} du =: I_1 + I_2 + I_3 + I_4 = 0.$$
(8)

Докажем, что $I_1,\,I_3\to 0$ при $a\to\infty.$ Пусть $\Phi\in H^p,\,{\rm Im}\,z>\delta>r>0.$ Тогда по формуле Коши и неравенству

$$|\Phi(z)| = \frac{1}{2\pi} \left| \int_{0}^{2\pi} \Phi(z + re^{i\varphi}) d\varphi \right| \leqslant \frac{(2\pi)^{1/p'}}{2\pi} \left(\int_{0}^{2\pi} |\Phi(z + re^{i\varphi})|^{p} d\varphi \right)^{1/p} \leqslant$$

$$\leqslant \frac{2(2\pi)^{1/p'}}{2\pi\delta^{2}} \int_{0}^{\delta} r dr \left(\int_{0}^{2\pi} |\Phi(z + re^{i\varphi})|^{p} d\varphi \right)^{1/p} \leqslant$$

$$\leqslant \frac{(2\pi)^{1/p'}}{\pi\delta^{2}} \left(\int_{0}^{\delta} \int_{0}^{2\pi} |\Phi(z + re^{i\varphi})|^{p} r dr d\varphi \right)^{1/p} \left(\frac{\delta^{2}}{2} \right)^{1/p'} \leqslant$$

$$\leqslant \left(\frac{1}{\pi\delta^{2}} \right)^{1/p} \left\{ \int_{v_{1}}^{v_{2}} dv \int_{x-\delta}^{x+\delta} |\Phi(u + iv)|^{p} du \right\}^{1/p}. \tag{9}$$

Известно, что для всех $y_1 < v < y_2$

$$\int_{x-\delta}^{x+\delta} |\Phi(u+iv)|^p \mathrm{d}u < \infty \quad \text{и} \quad \lim_{x\to\infty} \int_{x-\delta}^{x+\delta} |\Phi(u+iv)|^p \mathrm{d}u = 0.$$

Следовательно, правая часть неравенства (9) сходится к нулю, и $\Phi(z) \to 0$ при $x \to \pm \infty$. Поэтому $I_1, I_3 \to 0$ при $a \to \infty$. Отсюда вытекает, что $I_2 + I_4$ стремится к нулю при $a \to \infty$ в (8).

$$I_2 + I_4 = \varphi_a(t, y_1)e^{ty_1} - \varphi_a(t, y_2)e^{ty_2},$$
 где $\varphi_a(t, y) := \int_a^a F(u + iy)e^{-iut} du.$

Поскольку $\|\varphi_a(t,y_1)-\varphi(t,y_1)\|_{p'}\to 0, \ \|\varphi_a(t,y_2)-\varphi(t,y_2)\|_{p'}\to 0$ при $a\to\infty,$ то существует такая последовательность $\{a_k\},$ что

$$\lim_{k\to\infty}\varphi_{a_k}(t,y_1)=\varphi(t,y_1), \lim_{k\to\infty}\varphi_{a_k}(t,y_2)=\varphi(t,y_2), \quad \text{для п.в.}\, t.$$

Отсюда

$$\varphi(t, y_1)e^{ty_1} = \varphi(t, y_2)e^{ty_2}$$
 для п.в. t .

Положив $y_1 := y$; $y_2 := 1$, получим $\varphi(t, y) = e^{-ty} e^t \varphi(t, 1) := e^{-ty} \varphi(t)$. Для $\xi > 0$, по теореме Лебега о мажорируемой сходимости, имеем

$$\int_{0}^{\xi} e^{-ty} \varphi(t) dt = \int_{0}^{\xi} \varphi(t, y) dt = \lim_{a \to \infty} \int_{0}^{\xi} \varphi_{a}(t, y) dt =$$

$$= \lim_{a \to \infty} \frac{1}{2\pi} \int_{0}^{\xi} dt \int_{-a}^{a} F(u + iy) e^{-iut} du = \lim_{a \to \infty} \frac{1}{2\pi} \int_{-a}^{a} F(u + iy) \frac{e^{-iu\xi} - 1}{-iu} du =$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} F(u+iy) \frac{e^{-iu\xi} - 1}{-iu} du = \frac{1}{2\pi} \int_{\mathbb{R}} \left(\int_{\mathbb{R}} h(x)e^{-xy} e^{ixu} dx \right) \frac{e^{-iu\xi} - 1}{-iu} du =$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} h(x)e^{-xy} dx \int_{\mathbb{R}} \frac{e^{-iu\xi} - 1}{-iu} e^{ixu} du = \int_{0}^{\xi} h(x)e^{-xy} dx,$$

откуда следует, что $h(t)e^{-ty}=\varphi(t,y)$ есть преобразование Фурье функции F(x+iy).

По определению h(t), получим

$$(a(t) - ib(t))e^{-ty} = \frac{1}{2\pi} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}} F(u + iy) \frac{e^{-iut} - 1}{-iu} \mathrm{d}u, \quad t \geqslant 0$$
$$\frac{1}{2\pi} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}} F(u + iy) \frac{e^{-iut} - 1}{-iu} \mathrm{d}u = 0, \quad t < 0.$$

Для $F(z) \in H^p$ существует предел почти всюду

$$\lim_{y \to 0} F(x + iy) = f(x) + i\tilde{f}(x),$$

где f, \tilde{f} — пара преобразований Гильберта. Более того

$$\lim_{y \to 0} ||F(x+iy) - f(x) - i\tilde{f}(x)||_{L^p} = 0.$$

Поэтому при $y \to 0$ получим

$$a(t)-ib(t)=\frac{1}{2\pi}\frac{\mathrm{d}}{\mathrm{d}t}\int\limits_{\mathbb{R}}(f(x)+i\tilde{f}(x))\frac{e^{-iut}-1}{-iu}\mathrm{d}u,\quad\text{fi.b. }t\geqslant0,$$

$$\frac{1}{2\pi}\frac{\mathrm{d}}{\mathrm{d}t}\int\limits_{\mathbb{R}}(f(x)+i\tilde{f}(x))\frac{e^{-iut}-1}{-iu}\mathrm{d}u=0,\quad\text{fi.b. }t<0,$$

откуда следует, что справедливы равенства

$$\begin{cases} a(t) = \frac{1}{2\pi} \frac{\mathrm{d}}{\mathrm{d}t} \int\limits_{\mathbb{R}} \frac{f(u)\sin tu - \tilde{f}(u)\cos tu + \tilde{f}(u)}{u} \mathrm{d}u, & \text{ ii.b., } t \geqslant 0, \\ -b(t) = \frac{1}{2\pi} \frac{\mathrm{d}}{\mathrm{d}t} \int\limits_{\mathbb{R}} \frac{\tilde{f}(u)\sin tu + f(u)\cos tu - f(u)}{u} \mathrm{d}u, & \text{ ii.b. } t \geqslant 0 \end{cases}$$

И

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} \int\limits_{\mathbb{R}} \frac{f(u)\sin tu - \tilde{f}(u)\cos tu + \tilde{f}(u)}{u} \mathrm{d}u = 0, & \text{ fi.b. } t < 0, \\ \frac{\mathrm{d}}{\mathrm{d}t} \int\limits_{\mathbb{R}} \frac{\tilde{f}(u)\sin tu + f(u)\cos tu - f(u)}{u} \mathrm{d}u = 0, & \text{ fi.b. } t < 0. \end{cases}$$

Поэтому для почти всех $t\geqslant 0$

$$a(t) = \frac{1}{\pi} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}} f(u) \frac{\sin tu}{u} \mathrm{d}u, \quad b(t) = \frac{1}{\pi} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}} f(u) \frac{1 - \cos tu}{u} \mathrm{d}u. \tag{10}$$

Аналогично, для почти всех $t \geqslant 0$

$$-b(t) = \frac{1}{\pi} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}} \tilde{f}(u) \frac{\sin tu}{u} \mathrm{d}u, \quad a(t) = \frac{1}{\pi} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}} \tilde{f}(u) \frac{1 - \cos tu}{u} \mathrm{d}u. \tag{11}$$

Это означает, что пары (a,b) и (-b,a) одновременно являются CS-парами преобразований Фурье. Теорема доказана.

Теорема 2. Пусть интеграл (5) представляет функцию F(z) H^p , $1 в верхней полуплоскости <math>\mathrm{Im}\,z > 0$. Тогда интеграл

$$\Phi(z) = \int_{0}^{\infty} (A(t) - iB(t))e^{izt}dt, \quad y > 0$$
(12)

тоже принадлежит H^p , где

$$A(t) = \frac{1}{t^{\alpha}} \int_{0}^{t} (t - x)^{\alpha - 1} a(x) dx, \quad B(t) = \frac{1}{t^{\alpha}} \int_{0}^{t} (t - x)^{\alpha - 1} b(x) dx, \quad u \quad \alpha > 1/p'.$$

Более того, справедливо неравенство

$$\|\Phi\|_{H^p} \leqslant C(\alpha, p) \|F\|_{H^p}.$$
 (13)

Доказательство. Если интеграл (5) представляет функцию $F(z) \in H^p, p \in$ (1,2] в верхней полуплоскости ${\rm Im}\,z>0$, то справедливы равенства (10) и (11), где $f(x) + i\tilde{f}(x)$ — граничная функция для F(z) на действительной оси, причём $f\in L^p(\mathbb{R})$ и $\tilde{f}\in L^p(\mathbb{R})$. Таким образом, существуют $f\in L^p(\mathbb{R})$ и $\tilde{f}\in L^p(\mathbb{R})$ такие, что (a,b) и (-b,a) является CS-парами преобразований Фурье. Мы будем обозначать

$$f_{+}(x) = \frac{1}{2}(f(x) + f(-x)), \quad f_{-}(x) = \frac{1}{2}(f(x) - f(-x)),$$
 (14)

т.е. f_+ — чётная, а f_- — нечётная составляющие функции f_- Из равенства (10) и (14) для почти всех $t\geqslant 0$

$$a(t) = \hat{f}_c(t) = (f_+)_c^{\wedge}(t), \quad b(t) = \hat{f}_s(t) = (f_-)_s^{\wedge}(t),$$
 (15)

тогда из (4) и (15) следует, что для почти всех $t \geqslant 0$

$$A(t) = [H_{\alpha}(f_{+})]_{c}^{\wedge}(t), \quad B(t) = [H_{\alpha}(f_{-})]_{s}^{\wedge}(t).$$
 (16)

Так как (-b,a) также является CS-парой преобразований Фурье, то для почти $\text{BCEX } t \geqslant 0$

$$-b(t) = \frac{1}{\pi} \frac{\mathrm{d}}{\mathrm{d}t} \int\limits_{\mathbb{R}} \tilde{f}(u) \frac{\sin tu}{u} \mathrm{d}u, \quad a(t) = \frac{1}{\pi} \frac{\mathrm{d}}{\mathrm{d}t} \int\limits_{\mathbb{R}} \tilde{f}(u) \frac{1 - \cos tu}{u} \mathrm{d}u,$$

где \tilde{f} — преобразование Гильберта функции f.

Обозначим $g(x) = \tilde{f}(x)$. Тогда $g(x) \in L^p$ и аналогично (15) и (16) для почти $\mathrm{Bcex}\ t\geqslant 0$

$$-b(t) = (g_{+})_{c}^{\wedge}(t), \quad a(t) = (g_{-})_{s}^{\wedge}(t),$$

$$-B(t) = [H_{\alpha}(g_{+})]_{c}^{\wedge}(t), \quad A(t) = [H_{\alpha}(g_{-})]_{s}^{\wedge}(t).$$
(17)

Известно, что так как f_+ — чётная функция, то $H_{\alpha}(f_+)$ — чётная функция и так как f_- — нечётная функция, то $H_{\alpha}(f_-)$ — нечётная функция. Отсюда следует, что (A,B) является CS-парой преобразований Фурье функции $H_{\alpha}(f) \equiv H_{\alpha}(f_+) + H_{\alpha}(f_-)$. Аналогично мы получим, что (-B,A) является CS-парой преобразований Фурье функции $H_{\alpha}(g) \equiv H_{\alpha}(g_+) + H_{\alpha}(g_-)$. Так как $H_{\alpha}f \in L^p$ и $H_{\alpha}g \in L^p$ [5, Теорема 329], то из необходимости теоремы 1 следует, что $\Phi(z) \in H^p$ в верхней полуплоскости Im z > 0. По теореме 1 из представления (5) функции $F(z) \in H^p$, $p \in (1,2]$ в верхней полуплоскости Im z > 0 вытекают равенства (10). Аналогично, из представления (12) вытекают равенства

$$A(t) = \hat{\varphi}_c(t), \quad B(t) = \hat{\varphi}_s(t), \quad (t \geqslant 0),$$

где $\varphi(x)+i\tilde{\varphi}(x)$ — граничная функция на действительной оси для функции $\Phi(z)\in H^p$.

Пусть $\varphi(x) = \varphi_+(x) + \varphi_-(x)$, где φ_+ — чётная, а φ_- — нечётная составляющие функции φ . Тогда

$$A(t) = \hat{\varphi}_c(t) = (\varphi_+)_c^{\wedge}(t), \quad B(t) = \hat{\varphi}_s(t) = (\varphi_+)_s^{\wedge}(t), \quad \text{для п.в. } t \geqslant 0.$$

Отсюда и (16) мы получим

$$[H_{\alpha}(f_{+})]_{c}^{\wedge}(t) = (\varphi_{+})_{c}^{\wedge}(t), \quad [H_{\alpha}(f_{-})]_{s}^{\wedge}(t) = (\varphi_{+})_{s}^{\wedge}(t), \quad \text{для п.в. } t \geqslant 0.$$

По теореме единственности для преобразований Фурье

$$H_{\alpha}(f_{+})(t) = \varphi_{+}(t), \quad H_{\alpha}(f_{-})(t) = \varphi_{+}(t)$$

почти всюду на \mathbb{R} . Отсюда следует равенство

$$\varphi(t) = H_{\alpha}(f_{+})(t) + H_{\alpha}(f_{-})(t) \equiv H_{\alpha}(f)(t).$$

Аналогично, получим

$$\tilde{\varphi}(t) \equiv H_{\alpha}(\tilde{f})(t).$$

Из свойства ограниченности функций $H_{\alpha} \in L^p$ [5, Теорема 329] мы получим

$$\|\Phi\|_{H^{p}} = \|\varphi(t) + i\tilde{\varphi}(t)\|_{L^{p}} = \|H_{\alpha}(f + i\tilde{f})(t)\|_{L^{p}} \leqslant \|H_{\alpha}\|_{L^{p}} \|f(x) + i\tilde{f}(x)\|_{L^{p}} = C(\alpha, p)\|F\|_{H^{p}}.$$

Доказательство закончено.

В случае p=1 мы покажем, что оператор Римана–Лиувилля $H_{\alpha}f$ ограничен в пространстве $\mathrm{Re}\,H^1$, которое состоит из всех функций $f(x)\in L(\mathbb{R})$, для которых $\widetilde{f}\in L(\mathbb{R})$ и

$$||f||_{\operatorname{Re} H^1} := ||f||_{L(\mathbb{R})} + ||\tilde{f}||_{L(\mathbb{R})} < \infty.$$
 (18)

Известно, что пространство ${\rm Re}\,H^1$ изоморфно пространству H^1 и справедливы неравенства

$$A||f||_{\text{Re }H^1} \leqslant ||F||_{H^1} \leqslant B||f||_{\text{Re }H^1},\tag{19}$$

где $f(x)+i\tilde{f}(x)$ — граничная функция для функции $F(z)\in H^1$ на действительной оси, а константы $A>0,\,B>0$ не зависят от F.

В следующем утверждении мы дополняем результат Б.И. Голубова [4, Теорема D].

Теорема 3. Пусть интеграл (5) представляет функцию $F(z) \in H^1$ в верхней полуплоскости Im z > 0. Тогда интеграл

$$\Phi(z) = \int_{0}^{\infty} (A(t) - iB(t))e^{izt}dt, \quad y > 0$$
(20)

тоже принадлежит H^1 , где

$$A(t) = \frac{1}{t^{\alpha}} \int_{0}^{t} (t - x)^{\alpha - 1} a(x) dx, \quad B(t) = \frac{1}{t^{\alpha}} \int_{0}^{t} (t - x)^{\alpha - 1} b(x) dx, \quad u \quad \alpha > 1/p'.$$

Более того, справедливы неравенства

$$\|\Phi\|_{H^1} \leqslant C(\alpha, p) \|F\|_{H^1}, \quad \|H_{\alpha}f\|_{\operatorname{Re} H^1} \leqslant C \|f\|_{\operatorname{Re} H^1}.$$
 (21)

Доказательство. Если интеграл (5) представляет функцию $F(z) \in H^1$ в верхней полуплоскости Im z > 0, то справедливы равенства

$$a(t) = \frac{1}{\pi} \int_{\mathbb{R}} f(u) \cos tu \, du, \quad b(t) = \frac{1}{\pi} \int_{\mathbb{R}} f(u) \sin tu \, du, \tag{22}$$

И

$$-b(t) = \frac{1}{\pi} \int_{\mathbb{R}} \tilde{f}(u) \cos tu \, du, \quad a(t) = \frac{1}{\pi} \int_{\mathbb{R}} \tilde{f}(u) \sin tu \, du, \quad (23)$$

где $f(x) + i\tilde{f}(x)$ — граничная функция для F(z) на действительной оси, причём $f \in L(\mathbb{R})$ и $\tilde{f} \in L(\mathbb{R})$ [4, теорема D]. Таким образом, существуют $f \in L(\mathbb{R})$ и $\tilde{f} \in L(\mathbb{R})$ такие, что (a,b) и (-b,a) является CS-парами преобразований Фурье. Мы будем обозначать

$$f_{+}(x) = \frac{1}{2}(f(x) + f(-x)), \quad f_{-}(x) = \frac{1}{2}(f(x) - f(-x)),$$
 (24)

т.е. f_+ — чётная, а f_- — нечётная составляющие функции f_- Из равенства (22) и (24) для $t\geqslant 0$

$$a(t) = \hat{f}_c(t) = (f_+)_c^{\wedge}(t), \quad b(t) = \hat{f}_s(t) = (f_-)_s^{\wedge}(t),$$
 (25)

тогда из (4) и (25) следует, что для почти всех $t \geqslant 0$

$$A(t) = [H_{\alpha}(f_{+})]_{c}^{\wedge}(t), \quad B(t) = [H_{\alpha}(f_{-})]_{s}^{\wedge}(t).$$
 (26)

Так как (-b,a) также является CS-парой преобразований Фурье, то для $t\geqslant 0$

$$-b(t) = \frac{1}{\pi} \int_{\mathbb{R}} \tilde{f}(u) \cos tu du, \quad a(t) = \frac{1}{\pi} \int_{\mathbb{R}} \tilde{f}(u) \sin tu du,$$

где \tilde{f} — преобразование Гильберта функции f.

Обозначим g(x) = f(x). Тогда $g(x) \in L(\mathbb{R})$ и аналогично (25) и (26)) для почти всех $t \geqslant 0$

$$-b(t) = (g_+)_c^{\wedge}(t), \quad a(t) = (g_-)_s^{\wedge}(t),$$

$$-B(t) = [H_{\alpha}(g_+)]_c^{\wedge}(t), \quad A(t) = [H_{\alpha}(g_-)]_s^{\wedge}(t).$$

Отсюда следует, что (A,B) является CS-парой преобразований Фурье функции $H_{\alpha}(f) \equiv H_{\alpha}(f_{+}) + H_{\alpha}(f_{-})$. Аналогично получим, что (-B,A) является CS-парой преобразований Фурье функции $H_{\alpha}(g) \equiv H_{\alpha}(g_{+}) + H_{\alpha}(g_{-})$. Так как $H_{\alpha}f \in L(\mathbb{R})$ и $H_{\alpha}g \in L(\mathbb{R})$ [5, теореме 329], то $\Phi(z) \in H^{1}$ в верхней полуплоскости $\operatorname{Im} z > 0$.

Поскольку (5) представляет функцию $F(z) \in H^1$ в верхней полуплоскости ${\rm Im}\, z>0$ и верны равенства (22), то из представления (20) вытекают равенства

$$A(t) = \hat{\varphi}_c(t), \quad B(t) = \hat{\varphi}_s(t), \quad (t \geqslant 0),$$

где $\varphi(x)+i\tilde{\varphi}(x)$ — граничная функция на действительной оси для функции $\Phi(z)\in H^1.$

Пусть $\varphi(x) = \varphi_+(x) + \varphi_-(x)$, где φ_+ — чётная, а φ_- — нечётная составляющие функции φ . Тогда

$$A(t) = \hat{\varphi}_c(t) = (\varphi_+)_c^{\wedge}(t), \quad B(t) = \hat{\varphi}_s(t) = (\varphi_+)_s^{\wedge}(t), \quad (t \geqslant 0)$$

Отсюда мы получим

$$[H_{\alpha}(f_+)]_c^{\wedge}(t) = (\varphi_+)_c^{\wedge}(t), \quad [H_{\alpha}(f_-)]_s^{\wedge}(t) = (\varphi_+)_s^{\wedge}(t), \quad (t \geqslant 0).$$

По теореме единственности для преобразований Фурье

$$H_{\alpha}(f_{+})(t) = \varphi_{+}(t), \quad H_{\alpha}(f_{-})(t) = \varphi_{+}(t)$$

почти всюду на \mathbb{R} . Отсюда следует равенство $\varphi(t) = H_{\alpha}(f_{+})(t) + H_{\alpha}(f_{-})(t) \equiv H_{\alpha}(f)(t)$.

Аналогично, получим $\tilde{\varphi}(t) \equiv H_{\alpha}(\tilde{f})(t)$.

Из свойства ограниченности H_{α} [5, теореме 329] находим

$$\begin{split} \|\Phi\|_{H^{1}} &= \|\varphi(t) + i\tilde{\varphi}(t)\|_{L^{1}} = \|H_{\alpha}(f + i\tilde{f})(t)\|_{L^{1}} \leqslant \\ &\leqslant \|H_{\alpha}\|_{L^{1}} \|f(x) + i\tilde{f}(x)\|_{L^{1}} = C(\alpha, p) \|F\|_{H^{1}} \end{split}$$

и в силу (18) $\|H_{\alpha}f\|_{\operatorname{Re}H^{1}} \equiv \|\varphi\|_{L^{1}} + \|\tilde{\varphi}\|_{L^{1}} \approx \|\Phi\|_{H^{1}} \leqslant C(\alpha, p)\|f\|_{\operatorname{Re}H^{1}}$. Теорема доказана.

Литература

- 1. Гариетт Д. Ограниченные аналитические функции. М.: Мир, 1984.
- 2. Tитчмарш E. Введение в теорию интегралов Фурье. М.-Л.: Гостехиздат, 1948.
- 3. Pham T. Z. On Bellman–Golubov Theorems for the Riemann–Liouville Operators // J. Funct. Spaces Appl. -2009.- T. 7, N_2 3.
- 4. Голубов В. И. Об ограниченности операторов Харди и Харди-Литлвуда в пространствах ${\rm Re}\,H^1$ и BMO // Матем. сб. 1997. Т. 188, № 7. С. 93–106.
- 5. $Xap du \Gamma$. Γ ., Лummлey d Д. E., $Пoлиа \Gamma$. Hepabehctba. M.: ИЛ, 1948.

UDC 517.51

On Hardy Spaces

Tien Zung Pham

Mathematical Analysis and Function Theory Department Peoples Friendship University of Russia Miklukho Maklai str., 6, Moscow 117198, Russia

Representation theorems for functions from the Hardy spaces $H^p, 1 and the boundedness of the Riemann-Liouville operator in Re <math>H^1$ are proved.

Key words and phrases: Hardy space, Riemann-Liouville operator.