ОЦЕНКА СОДЕРЖАНИЯ ПОЛИХЛОРИРОВАННЫХ БИФЕНИЛОВ В ПОЧВАХ Г. МОСКВЫ

Ю.И. Баева, Д.С. Иванова

Экологический факультет Российский университет дружбы народов Подольское шоссе, 8/5, Москва, Россия, 113093

Приведены результаты измерений содержания полихлорированных бифенилов в почвах различных функциональных зон района Ясенево г. Москвы. Установлено, что основным источником поступления ПХБ в почвы района на сегодняшний день являются автомагистрали.

Ключевые слова: стойкие органические загрязнители, функциональные зоны, полихлорированные бифенилы, почвы, ASE-экстракция.

Одной из важнейших экологических проблем, сопровождающих развитие научно-технического прогресса в последнее столетие, является нарастающее загрязнение окружающей среды чуждыми ей химическими соединениями, среди которых наиболее опасной является группа стойких органических загрязнителей (CO3).

Впервые это понятие было предложено на Стокгольмской конференции, прошедшей в мае 2001 г. в г. Стокгольм (Швеция) под эгидой ООН и вступившей в силу 17 мая 2004 г. [14]. При этом в список СОЗ были включены двенадцать веществ, разделенные на три группы: хлорсодержащие пестициды (ДДТ, алдрин, диэлдрин, эндрин, хлордан, мирекс, токсафен, гептахлор), полихлорированные дибензодиоксины (ПХДД) и дибензофураны (ПХДФ), а также такие промышленные продукты, как полихлорированные бифенилы (ПХБ) и гексахлорбензол (ГХБ). Вопросы производства и применения, импорта и экспорта, высвобождения побочных продуктов, а также проблемы накопления и удаления СОЗ из окружающей среды регулируются положениями Стокгольмской конвенции. Несмотря на то, что Российская Федерация подписала данную конвенцию еще в 2002 г. (постановление Правительства РФ № 320 от 18.05.2002 «О подписании Стокгольмской Конвенции о стойких органических загрязнителях»), она была ратифицирована только в июне 2011 г. Федеральным законом от 27.06.2011 № 164-ФЗ «О ратификации Стокгольмской конвенции о стойких органических загрязнителях» [17].

Стокгольмская конвенция тесно связана с двумя другими международными соглашениями — Базельской конвенцией по контролю за трансграничными перемещениями опасных отходов и их удалением [3] и Роттердамской конвенцией о процедуре предварительного обоснованного согласия в отношении отдельных опасных химических веществ и пестицидов в международной торговле [12].

Положения Базельской конвенции устанавливают, что трансграничная перевозка и утилизация опасных отходов, в том числе и СОЗ, подлежат экологически

обоснованному регулированию. Она была принята в Базеле (Швейцария) 22 марта 1989 г. и вступила в силу 5 мая 1992 г. Российская Федерация ратифицировала настоящую Конвенцию Федеральным законом от 25.11.1994 № 49-ФЗ [15].

Роттердамская конвенция, принятая 10 сентября 1998 г. в Роттердаме, дает возможность каждой стране самостоятельно решать, какие потенциально опасные для здоровья химические вещества и пестициды ввозить на свою территорию, а какие — запретить ввиду невозможности обеспечить их безопасное применение. Она вступила в силу 24 февраля 2004 г. Россия присоединилась к данной Конвенции 27 июля 2011 г. (Федеральный закон от 08.03.2011 № 30-Ф3) [16].

СОЗ характеризуются высокой токсичностью, длительным периодом полуразложения, способностью к аккумуляции в жировых тканях животных и переносу через различные среды на большие расстояния, что и определяет их высокую опасность для окружающей среды и здоровья человека. Особую опасность представляют диоксины и диоксинподобные вещества, которые приводят к нарушению репродуктивной и гормональной систем, иммунного статуса, онкологическим заболеваниям, врожденным дефектам, нарушению развития и др. [1; 9].

Одними из самых распространенных среди стойких органических загрязнителей являются полихлорированные бифенилы (ПХБ). ПХБ — это семейство органических химических веществ, состоящих из двух бензольных колец, соединенных углерод-углеродной связью (рис. 1).

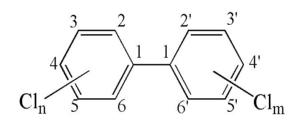


Рис. 1. Строение молекул ПХБ

Имеется 209 возможных конгенеров ПХБ, отличающихся числом и положением атомов хлора в молекуле. При этом атомами хлора могут замещаться как любая позиция в кольце, так и все десять. Количество и расположение атомов хлора определяет вид соединения и свойства его молекулы.

Синтез ПХБ впервые был описан еще в 1881 г., а их промышленное производство началось уже в конце 1920-х гг. [11]. По литературным данным, общее количество произведенных ПХБ в мире оценивается в 1,5 млн т [8]. При этом данные соединения долгое время не рассматривались как опасные, а промышленные смеси на их основе и ПХБ-содержащая продукция производились и использовались во многих странах мира практически без ограничений в виде электротрансформаторов и конденсаторов, лаков, восков, синтетических смол, эпоксидных красок и красок для подводных частей кораблей, покрытий, смазочно-охлаждающих эмульсий, жидких теплоносителей, рабочих жидкостей и др.

В СССР ПХБ в массовом количестве производили с 1934 г. вплоть до конца 1995 г. Их применяли в основном в качестве диэлектрических жидкостей в трансформаторах и конденсаторах под названиями «Совтол» и «Совол», а также пластификаторов при производстве полимерных материалов, смазок и фунгицидов для защиты древесины [8].

Интенсивное изучение загрязнения окружающей среды ПХБ началось лишь в 1970—1980-х гг. за рубежом. Было установлено, что основными источниками поступления этих веществ в окружающую среду являются разнообразные химические и металлургические производства, установки для сжигания бытовых и промышленных отходов. Поэтому практически в любой индустриальной стране имеются сильно загрязненные территории, нуждающиеся в очистке [18].

В нашей стране изучение загрязнения окружающей среды СОЗ началось только после 1985 г., когда ставшая доступной информация о техногенных катастрофах с выбросом в окружающую среду СОЗ привлекла пристальное внимание к данной проблеме [9]. Был проведен ряд предварительных исследований [6], но систематические работы в этой области фактически не проводились.

Кроме того, в настоящее время в России отсутствуют санитарно-гигиенические нормативы для отдельных конгенеров ПХБ, а установленные величины ПДК касаются только промышленных смесей ПХБ (в качестве стандартной смеси, по которой производился расчет ПДК, используется Арохлор 1254). Также отсутствует санитарно-гигиеническое нормирование ПХБ в почвах. Так, в основной НПА, устанавливающий требования к качеству почв в РФ (СанПин 2.1.7.1287-03. «Санитарно-эпидемиологические требования к качеству почвы. Санитарно-эпидемиологические правила и нормативы»), из списка органических токсикантов внесены только бенз(а)пирен и нефтепродукты, и не упоминается ни одного вещества из группы СОЗ [13]. Значение же ПДК для ПХБ в почвах устанавливается приказом Госкомэкологии РФ от 13.04.99 № 165 «О рекомендациях для целей инвентаризации на территории РФ производств, оборудования, материалов, использующих или содержащих ПХБ, а также ПХБ содержащих отходов» [10]. Однако данный приказ не учитывает требования к качеству почв населенных мест с различным функциональным назначением.

В 2005 г. в Москве ГПУ «Мосэкомониторинг» впервые проведено определение полихлорированных дибензо-п-диоксинов, дибензофураинов и диоксиноподобных бифенилов в почвах территорий г. Москвы, находящихся в зоне влияния промышленных предприятий и других источников загрязнения [5]. В 2012 г. данные мониторинговые исследования были возобновлены с целью получение представления о степени и источниках загрязнения почв г. Москвы СОЗ, выявленными в проводимых в 2005 г. исследованиях [4].

Согласно данным мониторинга, в 2012 г. среднее содержание ПХБ в почвах г. Москвы составило 0,34 мг/кг. При этом максимальное значение концентрации ПХБ было выявлено в промзоне Люблино на юго-востоке города (10,7 мг/кг), что связано с нахождением на этой территории значительного количества транс-

форматоров и конденсаторов, содержащих ПХБ в рабочих жидкостях. Без учета данного значения средняя концентрация ПХБ по городу составила 0,04 мг/кг [4].

Следует также отметить, что в загрязнении почвенного покрова столицы прослеживается тенденция снижения содержания ПХБ в почвах разных функциональных территорий города в последовательности: промышленная зона \approx селитебная зона > napkobo-pekpeaquohhaя зона > селитебно-транспортная зона \approx дворы ukon u детских cadob [2].

Наиболее загрязненными участками г. Москвы, где по данным мониторинга было выявлено превышение суммы ПХБ, можно назвать также шоссе Энтузиастов (ВАО) — 2 ПДК; Олимпийскую деревню (ЗАО), Филевский парк (ЗАО) и ул. Б. Серпуховская (ЮАО) — 1,5 ПДК; пересечение Варшавского шоссе и Нагатинской ул. (ЮАО), Новоясеневский проспект (ЮЗАО) — 1,2 ПДК [4].

Однако подобных исследований по загрязнению ПХБ почвенного покрова г. Москвы крайне мало, а конкретно для жилых районов, где нет больших промышленных предприятий и мусоросжигательных заводов, они и вовсе не проводились.

В связи с вышесказанным целью исследования явилась сравнительная оценка содержания ПХБ в почвах различных функциональных зон района Ясенево г. Москвы.

Район Ясенево находится на юго-западе столицы. Его характерной особенностью является расположение среди крупных лесопарковых зон (на севере и западе — парк «Узкое», на востоке — природный парк «Битцевский лес», на юге (за МКАД) — природный парк «Битцевский лес» и Бутовский лесопарк), а также практическое отсутствие на его территории промышленных, строительных или транспортных предприятий.

Отбор проб почвы производился из поверхностного слоя глубиной до $10~\rm cm$ в четырех разных функциональных зонах района Ясенево: вблизи Новоясеневского проспекта, на детской площадке, в лесопарковой зоне и непосредственно у МКАД. Каждый образец на точке пробоотбора составляли из пяти точечных проб массой не менее $100~\rm r$, взятых методом конверта с площадки площадью $1~\rm m^2$.

Работа выполнялась на базе Центра коллективного пользования РУДН. Количественное определение полихлорированных бифенилов в образцах почв проводилось с помощью метода газовой хроматомасс-спектрометрии (ГХ МС) на хроматомасс-спектрометре Thermo Focus DSQ II. Подготовка образцов для анализа осуществлялась с помощью ускоренной экстракции растворителем (AcceleratedSolvent Extraction — ASE) [6]. Идентификацию ПХБ осуществляли путем сравнения масс-спектра (в режиме полного ионного тока) и на основании определенных в результате анализа стандартного образца смеси «Арохлор 1254» индексов удерживания Ковача для используемой в анализе капиллярной колонки (рис. 2, 3).

Для количественного определения ПХБ в качестве внутреннего стандарта использовался 4,4-дибромбифенил [7], выбор которого обусловлен тем, что время его выхода лежит в интервале элюирования фракций тетра- и пентахлорбифенилов и не перекрывается с пиками мешающих компонентов пробы (рис. 4).

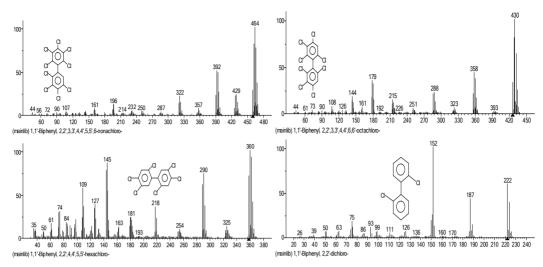


Рис. 2. Масс-спектры ИЭ конгенеров ПХБ с 9, 8, 6 и 2 атомами Cl

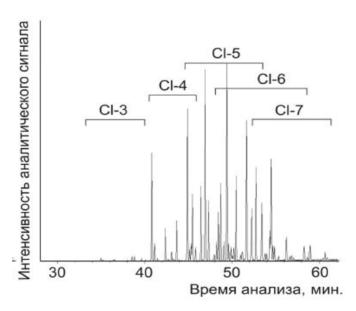


Рис. 3. Хроматограмма по полному ионному току смеси «Арохлор 1254»

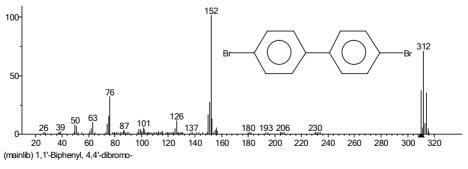


Рис. 4. Хроматограмма 4,4-дибромбифенила

По результатам проведенного исследования видно, что почвенный покров р-на Ясенево г. Москвы незначительно загрязнен ПХБ (рис. 5). Во всех точках пробоотбора не наблюдается превышения предельно допустимых концентраций данного загрязнителя в почве (ПДК = 60 hr/r).

Суммарное содержание ПХБ в почвах р-на Ясенево, нг/г

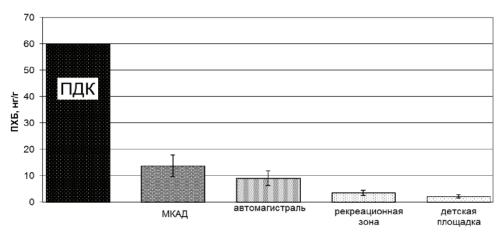


Рис. 5. Содержание ПХБ в почвах р-на Ясенево

Максимальные значения концентраций ПХБ отмечены вблизи МКАД — 0,3 ПДК и около Новоясеневского проспекта — 0,2 ПДК. Минимальные значения наблюдались на детской площадке — 0,04 ПДК. Таким образом, почвы района с различным функциональным назначением в зависимости от их загрязнения ПХБ можно расположить в следующем порядке: mpahcnopmhise mazucmpanu > pekpea-uuohhas 30ha > demckas nnomadka.

Принимая во внимание результаты других исследований загрязнения почв г. Москвы СОЗ, в том числе и данные мониторинга [2; 4], следует обратить внимание на дискретность распространения такого загрязнения по территории города. Так, например, вблизи Новоясеневского проспекта содержание ПХБ в почве составило $9{,}03 \pm 2{,}71$ нг/г ($p < 0{,}05$), что в 6 раз меньше значения, полученного при мониторинговых наблюдениях [4]. Это, по-видимому, объясняется путями поступления ПХБ в почвы. Учитывая особенность района Ясенево, а именно отсутствие на его территории каких-либо промышленных предприятий и свалок отходов — «прямых» источников ПХБ, загрязнения почв полихлорированными бифенилами там обусловлено двумя возможными факторами: во-первых, переносом загрязнителей со сточными и поверхностными водами с сильно загрязненных территорий и, во-вторых, их перемещение с атмосферными осадками и воздушными потоками. Отмеченные вблизи автомагистралей максимальные значения концентраций ПХБ убедительно свидетельствуют о том, что основным источником поступления данных загрязнителей в почвы Ясеневского района на сегодняшний день можно считать их перенос пылью и автотранспортом.

ЛИТЕРАТУРА

- [1] *Авхименко М.М.* Медицинские и экологические последствия загрязнения окружающей среды полихлорированными бифенилами // Полихлорированные бифенилы. Супертоксиканты XXI века. Вып. 5. М.: ВИНИТИ, 2000. С. 14—31.
- [2] *Агапкина Г.И. и др.* Диоксины и диоксиноподобные соединения в почвах Москвы // Биосферные функции почвенного покрова. Материалы Всероссийской научной конференции, посвященной 40-летнему юбилею Института физико-химических и биологических проблем почвоведения РАН. Пущино: SYNCHROBOOK, 2010. С. 6—7.
- [3] Базельская конвенция о контроле за трансграничной перевозкой опасных отходов и их удалением. [Электронный ресурс]. URL: http://www.conventions.ru/view base.php?id=49
- [4] Доклад о состоянии окружающей среды в Москве в 2012 году [Электронный ресурс]. URL: http://www.eco.mos.ru/
- [5] Загрязнение почвенного покрова города Москвы стойкими органическими загрязнителями [Электронный ресурс]. URL: http://www.mosecom.ru/
- [6] *Клюев Н.А., Бродский Е.С.* Определение полихлорированных бифенилов в окружающей среде и биоте // Полихлорированные бифенилы. Супертоксиканты XXI века. Инф. выпуск № 5 ВИНИТИ. Москва, 2000. С. 31—63.
- [7] *Клюев Н.А.* Масс-спектрометрический анализ смесей полихлорированных дифенилов с различной степенью хлорирования / Н.А. Клюев, Е.С. Бродский, В.Г. Жильников, Б.В. Бочаров // Журнал аналит. химии. 1990. Т. 45. № 10. С. 1994—2003.
- [8] *Майстренко В.Н.* Эколого-аналитический мониторинг стойких органических загрязнителей / В. Н, Майстренко, Н.А. Клюев. М.: БИНОМ. Лаборатория знаний, 2009.
- [9] Сперанская О. [Электронный ресурс]. URL: http://www.ecoaccord.org
- [10] Приказ Госкомэкологии РФ от 13.04.1999 № 165 [Электронный ресурс]. URL: http://www.bestpravo.ru/
- [11] ПХБ-трансформаторы и конденсаторы: от эксплуатации и регламентирования до реклассификации и удаления // Программа ООН по окружающей среде. Вып. 1, 2002.
- [12] Роттердамская конвенция о процедуре предварительного обоснованного согласия в отношении отдельных опасных химических веществ и пестицидов в международной торговле. [Электронный ресурс]. URL: http://www.conventions.ru/view_base.php?id=66
- [13] СанПин 2.1.7.1287-03 [Электронный ресурс]. URL: http://base.garant.ru/
- [14] Стокгольмская конвенция о стойких органических загрязнителях [Электронный ресурс]. URL: http://www.un.org/ru/
- [15] Федеральный закон от 25.11.1994 № 49-ФЗ «О ратификации Базельской конвенции о контроле за трансграничной перевозкой опасных отходов и их удалением» [Электронный ресурс]. URL: http://www.garant.ru/
- [16] Федеральный закон от 08.03.2011 № 30-ФЗ «О присоединении Российской Федерации к Роттердамской конвенции о процедуре предварительного обоснованного согласия в отношении отдельных опасных химических веществ и пестицидов в международной торговле» [Электронный ресурс]. URL: http://www.garant.ru/
- [17] Федеральный закон от 27.06.2011 № 164-ФЗ «О ратификации Стокгольмской конвенции о стойких органических загрязнителях» [Электронный ресурс]. URL: http://www.garant.ru/
- [18] Experiments on the mobility of 2, 3, 7, 8-tetrachlorodibenzo-*p*-dioxin at Times Beach, Missouri / R.A. Freeman, F.D. Hileman, R.W. Noble, J.M. Schroy In: J.H. Exner ed. // Solving Hazardous Waste Problems, ACS Symposium Series Num. 338.—1987.

LITERATURA

- [1] Avximenko M.M. Medicinskie i e'kologicheskie posledstviya zagryazneniya okruzhayushhej sredy polixlorirovannymi bifenilami // Polixlorirovannye bifenily. Supertoksikanty XXI veka. —Vypusk 5. M.: VINITI, 2000. S. 14—31.
- [2] *Agapkina G.I. i dr.* Dioksiny i dioksinopodobnye soedineniya v pochvax Moskvy // Biosfernye funkcii pochvennogo pokrova. Materialy Vserossijskoj nauchnoj konferencii, posvyashhennoj 40-letnemu yubileyu Instituta fiziko-ximicheskix i biologicheskix problem pochvovedeniya RAN. Pushhino: SYNCHROBOOK, 2010. S. 6—7.
- [3] Bazel'skaya konvenciya o kontrole za transgranichnoj perevozkoj opasnyx otxodov i ix udaleniem. [E'lektronnyj resurs]. URL: http://www.conventions.ru/view base.php?id=49
- [4] Doklad o sostoyanii okruzhayushhej sredy v Moskve v 2012 godu [E'lektronnyj resurs]. URL: http://www.eco.mos.ru/
- [5] Zagryaznenie pochvennogo pokrova goroda Moskvy stojkimi organicheskimi zagryaznitelyami [E'lektronnyj resurs]. URL: http://www.mosecom.ru/
- [6] *Klyuev N.A., Brodskij E.S.* Opredelenie polixlorirovannyx bifenilov v okruzhayushhej srede i biote / N.A. Klyuev, E.C. Brodskij // Polixlorirovannye bifenily. Supertoksikanty XXI veka. Inf. vypusk № 5 VINITI. Moskva, 2000. S. 31—63.
- [7] *Klyuev H.A.* Mass-spektrometricheskij analiz smesej polixlorirovannyx difenilov s razlichnoj stepen'yu xlorirovaniya / N.A. Klyuev, E.C. Brodskij, V.G. Zhil'nikov, B.V. Bocharov // Zhurn. analit. ximii. 1990. T. 45. № 10. S. 1994—2003.
- [8] *Majstrenko V.N.* E'kologo-analiticheskij monitoring stojkix organicheskix zagryaznitelej / V.N. Majstrenko, N.A. Klyuev. M.: BINOM. Laboratoriya znanij, 2009.
- [9] Speranskaya O. [E'lektronnyj resurs]. URL: http://www.ecoaccord.org
- [10] Prikaz Goskome'kologii RF ot 13.04.1999 N 165 [E'lektronnyj resurs]. URL: http://www.bestpravo.ru/
- [11] PXB-transformatory i kondensatory: ot e'kspluatacii i reglamentirovaniya do reklassifikacii i udaleniya // Programma OON po okruzhayushhej srede. Vyp. 1, 2002.
- [12] Rotterdamskaya konvenciya o procedure predvaritel'nogo obosnovannogo soglasiya v otnoshenii otdel'nyx opasnyx ximicheskix veshhestv i pesticidov v mezhdunarodnoj torgovle. [E'lektronnyj resurs]. URL: http://www.conventions.ru/view base.php?id=66
- [13] SanPin 2.1.7.1287—03 [E'lektronnyj resurs]. URL: http://base.garant.ru/
- [14] Stokgol'mskaya konvenciya o stojkix organicheskix zagryaznitelyax [E'lektronnyj resurs]. URL: http://www.un.org/ru/
- [15] Federal'nyj zakon ot 25.11.1994 g. N 49-FZ "O ratifikacii Bazel'skoj konvencii o kontrole za transgranichnoj perevozkoj opasnyx otxodov i ix udaleniem" [E'lektronnyj resurs]. URL: http://www.garant.ru/
- [16] Federal'nyj zakon ot 08.03.2011 N 30-FZ "O prisoedinenii Rossijskoj Federacii k Rotter-damskoj konvencii o procedure predvaritel'nogo obosnovannogo soglasiya v otnoshenii ot-del'nyx opasnyx ximicheskix veshhestv i pesticidov v mezhdunarodnoj torgovle" [E'lektronnyj resurs]. URL: http://www.garant.ru/
- [17] Federal'nyj zakon ot 27.06.2011 N 164-FZ "O ratifikacii Stokgol'mskoj konvencii o stojkix organicheskix zagryaznitelyax" [E'lektronnyj resurs]. URL: http://www.garant.ru/
- [18] Experiments on the mobility of 2,3,7,8-tetrachlorodibenzo-p-dioxin at Times Beach, Missouri / R.A. Freeman, F.D. Hileman, R.W. Noble, J.M. Schroy In: J.H. Exner ed. // Solving Hazardous Waste Problems, ACS Symposium Series Num. 338.—1987.

THE ASSESSMENT OF CONTENT POLYCHLORINATED BIPHENYLS IN SOILS OF MOSCOW

Y.I. Baeva, D.S. Ivanova

Ecological department Peoples' Friendship University of Russia Podolskoe shosse, 8/5, Moscow, Russia, 113093

There are given the measurement results of polychlorinated biphenyls concentration in the soils at a different functional areas of Yasenevo district in Moscow. Found that the major source of PCB in the district's soils today are motorways.

Key words: persistent organic pollutants, functional areas, polychlorinated biphenyls, accelerated solvent extraction, soil.