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Abstract. The effective buckling length of a column in a steel frame depends on the sidesway of the frame.
The classification sidesway — no sidesway of a frame depends on all members of the frame and is made on an empirical
basis. A change of class leads to large changes in the effective column length, and thus affects the buckling load and the
economy of the column design. In order to avoid the uncertainties of the empirical classification, it is proposed to determine
the buckling load of the complete frame with a nonlinear analysis. The method is illustrated with an unbraced and a braced
frame, which are analyzed for hinged as well as fixed columns at ground floor level. The forces in the columns at buckling
of the frames are compared to the buckling loads of the single columns.

The design of high-rise steel frames against buckling by sidesway — no sidesway categorization has been com-
pared to the buckling analysis of the frames as a whole with nonlinear models. The results confirm the large differences
between the buckling loads of braced and unbraced high-rise frames, which are well known from analytical solutions for

simple portal frames.
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1. Objective

Building codes of different countries stipulate
that the effective length for the buckling of columns
in a steel frame depends on the sidesway of the frame.
The effective length factor of columns varies from
0.5 to 1.0 in a single bay portal frame without side-
sway, but from 1.0 to infinity if there is sidesway.
Frames are classified as frames with or without side-
sway on an empirical basis, before separate align-
ment charts for effective length factors are applied
for the two classes. Slight changes in the frame de-
sign, which change the class, can lead to unrealistic
changes in the effective length factor.

Analytical solutions for axially loaded single
columns with hinged and fixed ends [1] show, that
the buckling load does not only depend on the rota-
tional restraints at its nodes, but also on the restraint
against relative lateral motion of the nodes. This la-
teral displacement is called sidesway.
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The traditional analysis of column buckling in
complete structures accounts explicitly for the ben-
ding stiffness of the adjacent members of a column.
The stiffness factors are defined for both nodes of
a column. Restraint against sidesway is not specified
for the adjacent members, but for the structure as
a whole. The classification is empirical according to
rules specified in codes [2; 3]. There are only two
classes of lateral restraint: sidesway and no sidesway.
Intermediate degrees of restraint, which exist in the
structure, are not considered in the buckling analysis.

A considerable amount of research is conducted
in Russia in the area of mathematical and computer
modeling of displacements and stability of 3-D rods
subjected to compression, bending and torsion [4-9].
Numerical investigations with commercial software
products are also being performed [10]. However,
the determination of the effective length of columns
in multistory frames still comprises a problem for
design engineers.
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A reliable method for the determination of
the elastic buckling load of multi-storey and multi-bay
steel frames is presented. Material nonlinearity due
to yielding is not considered. In order to compare
the proposed complete frame method to traditional
single column design, the axial forces acting in
the columns at buckling of the complete frame are
determined. They are compared to the buckling loads
of the single columns, which are restrained at their
ends by the adjacent members of the frame.

Analytical solutions for axially loaded single
columns with hinged and fixed ends [1] show, that

the buckling load does not only depend on the rota-
tional restraints at its nodes, but also on the restraint
against relative lateral motion of the nodes. This lat-
eral displacement is called sidesway.

A column C, which is part of a complete struc-
ture, is restrained laterally and rotationally at its nodes
by the adjacent members of the structure. The degree
of restraint depends not only on the properties of these
members, but also on the stress resultants acting in
the restraining members. If they are themselves near
buckling, the adjacent members do not provide sig-
nificant restraint against buckling of column C.
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Figure 1. Traditional buckling analysis of columns in a frame
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Figure 2. Alignment charts for the effective length factor § of columns
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The traditional analysis of column buckling in
complete structures accounts explicitly for the ben-
ding stiffness of the adjacent members of a column C.

The stiffness factors G, and G, in figure 1 are defi-

ned for nodes 4 and B of column C. Restraint against
sidesway is not specified for the adjacent members,
but for the structure as a whole. The classification is
empirical according to rules specified in codes. There
are only two classes of lateral restraint: sidesway and
no sidesway. Intermediate degrees of restraint, which
exist in the structure, are not considered in the buck-
ling analysis.

The influence of the restraints on the buckling load
of column C is measured by means of the effective
length factor B. The effective length factor of a simply

supported column without sidesway equals 1 and its
buckling load is given by the Euler formula. The buck-

ling load P, of a column with general restraint is also

computed with the Euler formula, but its true length L
is replaced by the effective length B L. For given

restraints, the effective length B is read in alignment
charts [11] such as those shown in figure 2.
2
n EJ
P == (1)
(BL)

EJ —bending stiffness of the column.

The simplest frame is a portal frame, which con-
sists of two equal columns connected by a horizontal
girder. The analytical solutions for the effective
length factor of portal frames with hinged and with
fixed columns are shown in figure 3 for the classes
sidesway and no sidesway. The stiffness ratio is

0=G,=(J,L)/(J,L,).
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Figure 3. Buckling of portal frames

Figure 3 illustrates that the effective length factor
B depends very strongly on the end restraint of
the column. The buckling load in equation (1) depends
on B°. The economy of column design in engineering
practice depends on the reliable determination of
the effective length factor. To avoid the uncertainties
associated with the empirical classification sidesway
and no sidesway, which has a dominant effect on
the effective length, and to account for the state of
the adjacent members, which provide the buckling re-
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straint for a column, a new approach is followed by
basing the buckling design on a nonlinear analysis of
the structure as a whole. The objective of the reported
research is to compare this approach to the traditional
column design method.

2. Nonlinear Analysis of Frames

In order to account for the true stiffness of
the elastic frame in the buckling of columns, a geo-
metrically nonlinear analysis of the frame as a whole
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is performed. The attributes of the frame and a load
pattern are prescribed. The applied load is the pro-
duct of the load pattern and a load factor. The finite
element method is used to formulate the governing
equations [12]. The equilibrium conditions are sa-
tisfied for the instant configuration of the structure
and the nonlinear terms of the strain-displacement
equations are taken into account. The nonlinear
governing equations are solved with a stepwise ite-
rative method. The step size is controlled by keep-
ing the arc increment constant. The displacement
increments in the steps are summed to yield the to-
tal displacements.

In each step of the analysis, the tangent stiffness
matrix K of the current frame configuration is decom-
posed into the product of a left triangular matrix L
with unit diagonal elements, a diagonal matrix D with

diagonal coefficients d, and a right triangular matrix

L". The product d,d,...d, of the diagonal coeffi-

cients of D equals the determinant of the tangent stiff-
ness matrix K of the frame in the current load step.

detK = dd,...d,. 3)

The diagonal coefficients d, are monitored. If

the sign of at least one coefficient d; changes from

positive to negative in a load step, this coefficient
has the value null for a load factor A within the load

step. The tangent stiffness matrix K becomes singu-
lar for this load factor, and the frame buckles.

After the load step has been determined in
which the frame configuration becomes singular,
the value of the critical load factor A, is determined

by solving a general eigenvalue problem. The formu-
lation of this eigenvalue problem is also treated in [3]
and implemented in a software platform. The follo-
wing examples have been analyzed with this platform.

3. Test Cases

The buckling load of plane test frames with the
geometry and loading shown in figure 4 is deter-
mined by nonlinear analysis. The test frame consists
of 4 bays with equal widths of 6.0 m and 12 storeys

K =LDL". 2) with equal heights of 4.0 m.
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Figure 4. Multi-storey steel frame subjected to uniform floor load
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Figure 5. Graphic display with finite element model and member attribute panel

The bays are numbered consecutively from left to
right, starting at 0. The vertical lines containing the col-
umns are called sections. The sections are also num-
bered consecutively from left to right, starting at 0. Bay
k starts at section k£ and ends at section £ + 1. The sto-
reys are numbered consecutively, starting at 0. The hor-
izontal lines containing the girders are called floors.
The floors are also numbered con-secutively, starting at
0. Storey £ starts at floor & and ends at floor £+ 1.

The cross-section of the girders is constant over
the height of the frame. The cross-section of the co-
lumns is constant in floors 0 to 3, 4 to 7 and 8 to 11.
The section properties are shown in the figure. Areas
are specified in m”, moments of inertia in m*. All
members of the frame have a modulus of elasticity of
2.1%10° kN/m”. The girders carry a uniformly distri-
buted load of 80.0 kN /m.

The four analyses of the test frame are identified
as case 1 to case 4. In cases 1 and 3 the columns of
the lowest floor 0 are hinged at the foundations,
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in cases 2 and 4 they are fixed. In all cases the co-
lumns are fixed against translation at the foundations.

Different degrees of restraint against side-sway
are provided by means of bracing in bay 0. In cases 1
and 2 the frame is unbraced. In cases 3 and 4
the frame is braced. A range of bracing stiffness is
studied in both cases by varying the area of the bra-
ces from 0.0005 to 0.0020 m”.

The test frame is mapped by a parameterized
generator to a finite element model. The finite ele-
ments for bending in the nonlinear frame analysis do
not account for the influence of the axial force on
the bending moments due to the curvature of the de-
formed axis of the finite element. In order to achieve
adequate accuracy of the buckling loads in a stability
analysis, it is therefore not sufficient to model the co-
lumn between two floors of the frame with a single
finite element. Each column of the frame is mapped
to 4 members with a length of 1.0 m in the finite ele-
ment model. The girders of the frame are not subject
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to large axial forces. Each girder of the frame is
therefore mapped to 3 members with a length of 2.0
m in the finite element model.

Figure 5 shows the digital display of the soft-
ware platform in which the nonlinear analysis has
been implemented. The upper two rows contain but-
tons and combo-boxes for the control of the func-
tions of the platform and the identification of nodes,
members, loads and supports of the finite element mo-
del. The screenshot shows the finite element model
for the frame in figure 4. Also shown is the panel
with the attributes of the member which is marked
with the color cyan in the frame elevation. At other
stages of the analysis, the computed results are dis-
played in the graphic panel.
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Figure 6. Format editor of the graphic user interface

The output of the nonlinear analysis is con-
trolled with the format editor in figure 6.

Case 1. Unbraced frame with hinged supports

The load is applied in 10 steps. The frame
reaches a singular state for load factor 0.9628.
The displacements, bending moments and axial for-
ces in the frame at the buckling load are shown in
figure 7. Also shown is the buckled shape of the frame.
The upper 10 storeys remain essentially undeformed
at buckling and displace laterally due to bending de-
formations of the columns of the lowest two storeys.

There is no lateral displacement until buckling
occurs. The vertical displacement of the topmost left
node is 14.2 mm that of the neighboring node on
the same floor is 30.0 mm. Bending of the inner co-
lumns is negligible. The bending moments in the outer
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columns reach 105 kN*m. The bending moments of
—240 kN*m at the end points of the inner girders are
nearly equal to —gL' /12 =-0.9628%80%6" /12 =
= —231 kN*m. The bending moment of 130 kN*m
at mid-span of the outer girders exceeds g L’ /24 =
=116 kN*m significantly.

The total load at buckling is 22182 kN. The axi-
al forces in the columns in sections 0 to 4 of floor
0 are 2692, 5617, 5560, 5617, 2692 kN. The buck-
ling loads of the single columns, as determined
with the alignment charts, are 2165 kN for the
outer columns and 3718 kN for the inner columns.
The total capacity of the columns in floor O is
2%2165+3*%3718 =15484 kN, which is 69.8 per-
cent of the buckling load of the frame.

Case 2. Unbraced frame with fixed supports

The load is applied in 10 steps. The frame rea-
ches a singular state for load factor 2.442. The dis-
placements, bending moments and axial forces in
the frame at the buckling load are shown in figure 8.
Also shown is the buckled shape of the frame. Unlike
case 1, the columns bend significantly in storeys 0
to 6 due to the fixed supports. The building under-
goes shear deformation after buckling.

There is no lateral displacement until buckling
occurs. The vertical displacement of the topmost left
node is 36.3 mm, that of the neighboring node on
the same floor is 76.4 mm. The increase relative to
case 1 is proportional to the increase in the load factor.
Bending of the inner columns is negligible. The ben-
ding moments in the outer columns reach 289 kN*m.
The bending moments of =578 kN*m at the end
points of the inner girders are nearly equal to
—q L' /12 = —2.442%80%6” /12 = —586 kKN*m. The
bending moment of 430 kN*m at mid-span of the
outer girders exceeds the value ¢ L’ /24 =293 kN*m
significantly.

The total load at buckling is 56235 kN.
The axial forces in the columns in sections 0 to 4 of
floor 0 are 6823, 14247, 14095, 14247, 6823 kN.
The buckling loads of the single columns, as deter-
mined with the alignment charts, are 12822 kN for
the outer columns and 16084 kN for the inner co-
lumns. The total capacity of the columns in floor 0
is 2#12822+3*16084 = 73896 kN, which is 131
percent of the buckling load of the frame, as com-
pared to 69.8 percent in case 1.

FRAME BUCKLING
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Case 3. Braced frame with hinged supports

The load is applied in 10 steps. For a brace area
of 0.001, the frame reaches a singular state for load
factor 5.3533. The displacements, bending moments
and axial forces in the frame at the buckling load are
shown in figure 9. Also shown is the buckled shape
of the frame. The buckled shape is a shear defor-
mation of frame with strong deformation in storey 0.

The frame displaces laterally before buckling.
This is due to the unsymmetrical bracing. The verti-
cal displacement of the topmost left node is 7.0 mm,
its lateral displacement is 737 mm. If the maximum
lateral displacement of a frame of height H is limited
to H/100, the maximum permitted lateral displace-
ment is 480 mm. The frame therefore cannot be
loaded up to the singular state. Because the load fac-
tor-displacement diagram of the left topmost node is
highly nonlinear, the maximum permitted load factor
of 4.62 is read in the diagram.

Due to the bracing, the bending moments in
the columns are lower than in cases 1 and 2, but
the moments in the columns of storey 0 are signifi-
cantly higher than those in the other storeys of
the frame.

The total load at buckling is 123370 kN.
The axial forces in the columns in sections 0 to 4 of
floor 0 are 9709, 35733, 31091, 31127, 15710 kN.
The buckling loads of the single columns, as deter-
mined with the alignment charts, are 28320 kN for
the outer and 30615 kN for the inner columns.
The total capacity of the single columns in floor O is
2%28320+3*30615=148485 kN or 120 percent

of the buckling load of the frame.
Case 4. Braced frame with fixed supports

The load is applied in 10 steps. For a brace area
of 0.001, the frame reaches a singular state for load
factor 6.9384. The displacements, bending moments
and axial forces in the frame at the buckling load are
shown in figure 10. Also shown is the buckled shape
of the frame. The buckled shape is a shear defor-
mation of the frame. The deformation in storey 0 is
much less than in case 3, but the bending defor-
mation of the columns in section 1 has become large
in storeys 2 to 6.

The frame displaces laterally before buckling.
The vertical displacement of the topmost left node
is 81.0 mm, its lateral displacement is 1486 mm.
If the maximum lateral displacement is limited to
H/100, the maximum permitted lateral displacement
is 480 mm. Because the load factor-displacement
diagram of the left topmost node is highly nonlinear,
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the maximum permitted load factor of 4.70 is read in
the diagram.

The total load at buckling is 159860 kN.
The axial forces in the columns in sections 0 to 4 of
floor 0 are 5880, 51937, 40668, 40185, 21193 kN.
The buckling loads of the single columns, as deter-
mined with the alignment charts, are 47615 kN
for the outer and 59480 kN for the inner columns.
The total capacity of the single columns in floor 0 is
2+47615+3%59480 =273670 kN or 171.2 per-

cent of the buckling load of the frame.
Stiffness of the braces

Table 1 and figure 11 show the influence of
the area of the cross-bracing on the critical load fac-
tor of the frame. The sensitivity of the buckling load
to the stiffness of the bracing is not reflected in
the alignment charts in figure 2.

Table 1. Influence of the brace area
on the load factor LF for buckling

Area of a brace LF for LF for
hinged supports fixed supports

0.0005 3.7236 5.6305
0.0006 4.1440 6.1045
0.0007 4.5093 6.5058
0.0008 4.8573 6.7105
0.0009 5.1534 6.8433
0.0010 5.3533 6.9384
0.0015 5.8648 7.1724
0.0020 5.9944 7.2583
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= fixed supports
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Figure 11. Influence of the brace area
on the buckling load of the braced frame

4. Conclusions and recommendations

The design of high-rise steel frames against buck-
ling by sidesway — no sidesway categorization, com-
bined with the use of alignment tables for effective
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length factors of single columns, has been compared
to the buckling analysis of the frames as a whole with
nonlinear models. Both methods confirm the large
differences between the buckling loads of braced and
unbraced high-rise frames, which are well known
from analytical solutions for simple portal frames.
Sidesway is a very important factor influencing the
stability of the frames.

Four test frames have been analyzed to show
that the differences between the results of the two
methods are significant. The two-class sidesway ca-
tegorization does not account for the stiffness of
the bracing. Either there is no bracing, or the re-
straint against sidesway is rigid. The nonlinear ana-
lysis shows that the stiffness of the restraint has
a strong influence on the magnitude of the buckling
load of the braced frame. It is therefore expected that
the nonlinear analysis leads to more economical de-
signs than the two-category method. The nonlinear
analysis also improves safety because the “no side-
sway” condition of the two-category method cannot
be implemented in the built structure, such that
the buckling load is less than the value computed
with that method.

Before the nonlinear method can be recommend-
ed for general use in the buckling design of frames,
additional investigations are required. For example,
the buckling loads for general load patterns should be
studied in addition to the uniformly distributed load
on all beams used in the examples of this paper.
Broader ranges of frame geometry and member stift-
ness should be investigated. The influence of elastic-
plastic behavior must be considered. For general
structures, a wide range of three-dimensional nonline-
ar analyses must be performed and evaluated relative
to the traditional method of design.

An additional fundamental theoretical issue
must also be addressed. Several finite elements
have been used in this study to model one member
of the frame. This subdivision is necessary because
the element stiffness matrices in the applied method
(and in many commercial packages) do not account
for the influence of axial force on the bending stift-
ness of the individual member. If each member of
a frame can be mapped to a single element in
the model, which buckles at the Euler load corre-
sponding to its restraint condition in the frame,
the required storage and computational capacity for
the nonlinear analysis is reduced very significantly.
This reduction is highly desirable if the method is
considered for general use.

© Vera V. Galishnikova, Peter Jan Pahl, 2018
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HAVYHASA CTATbA

AHaJIM3 YCTOMYMBOCTH paM
0e3 yuyeTa KJIACCH(PUKALUM 110 BO3MOKHOCTH MONEPEYHbIX CMelleHU

B.B. 'ammmnunkosa'*, I1.51. Maas?

'Poccuiickuii yHUBEpCUTET JPyKOBI HAPOIOB
ya. Muxnyxo-Maxnas, 6, Mockea, Poccuiickas @edepayus, 117198

BepAUHCKHil TEXHUYECKUH YHHBEPCHTET
ya. 17 wons, 0. 135, bepaun, @edepamusnas pecnyonuxa I'epmanus, D-10623

* ABTOp, OTBETCTBEHHBIH 32 HEPENUCKY

(nocmynuna 6 pedaxyuro: 15 anpens 2018 r.; npunama xk nyoauxayuu: 15 nons 2018 r.)

PacueTHble AMHBI KOJIOHH MPH pacdyeTe CTAIbHBIX paM ONPEENSIOTCSA B 3aBUCUMOCTHU OT THUIA PAMBI — C BO3MOKHOCTBIO
MIOIEPEYHOTr0 CMELIEHHsT WM MPU OTCYTCTBUH TakoBoro. Kmaccudukanust paM 1o 3TOMy HPH3HAKY 3aBHCHT OT JKECTKOCTH
KOHCTPYKIIMU paMbl U YCIIOBUH €€ 3aKpEMJICHUS U BBIONHAETCS SMIMPUUYECKH. I3MEHEeHUe THIIAa paMbl B COOTBETCTBUH C 3TON
Kiaccu(uKaye BeAeT K 3HAYNTENbHOMY M3MEHEHHIO PACUCTHBIX JJIMH €€ KOJIOHH, YTO BIIEYET 33 CO00M M3MEHEHUE KPHUTH-
YECKON HArpys3KH, BIUSET Ha pa3Mep CEYeHHs KOJOHH M OOIIYI0 MAaTepHAIOEMKOCTh KOHCTPYKIMM paMbl. J[jist TOro 4roOb
n30eXaTh HEONPEAEICHHOCTH SMIMPUIECKON KIIaCCH(UKAINH, TIPEATIAracTCsl ONPENEIISITh KPUTHUECKYIO HAarpy3Ky pambl Ipy
MIOMOIIY HEJTMHEWHOT'O PacueTa, a pacyeTHbIE JUIMHBI KOJIOHH YTOYHSTh, HCX0As U3 (opmbl motepu ycroiunsoctu. Ipemara-
€MbIIi METOJI POUJUIIOCTPUPOBAH IIPUMEPAMHU pacueTa XKECTKOM U cBA3eBOM paMm. IlonydeHHble yCUiIus B KOJIOHHAX IIEPBOTO
9Ta’Ka CPaBHEHBI C KPUTHUYECKUMH HArpy3KaMH OTHENILHO CTOSLIMX KOJOHH. BBINOJIHEHO CPaBHEHUE pacyeTOB IO METOIMKE
HopM CUHIA c ucnosnp3oBaHueM Kiaccu(uKanuy paM U npejiaraeMoMy HellMHeHHOMY MeToxy. Pe3ynbraTel cpaBHEHHs MOA-
TBEPXKJAIOT 3HAUUTENBHBIE PACXOXKICHUS B KPUTHUECKOM Harpy3Ke IJIsl CBA3EBBIX U XKECTKUX MHOTOATAXHBIX PaM.

KiroueBble c10Ba: BEICOTHOE 34aHuEC, NMOTCPA YCTOﬁqHBOCTH KOJIOHHBI, HpO,HOJ'[I:HLIﬁ HpOFI/I6, pacyeTHad AJIMHA
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