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Abstract: In the design stage of construction projects, determining the soil permeability coefficient is
one of the most important steps in assessing groundwater, infiltration, runoff, and drainage. In this
study, various kernel-function-based Gaussian process regression models were developed to estimate
the soil permeability coefficient, based on six input parameters such as liquid limit, plastic limit, clay
content, void ratio, natural water content, and specific density. In this study, a total of 84 soil samples
data reported in the literature from the detailed design-stage investigations of the Da Nang–Quang
Ngai national road project in Vietnam were used for developing and validating the models. The
models’ performance was evaluated and compared using statistical error indicators such as root
mean square error and mean absolute error, as well as the determination coefficient and correlation
coefficient. The analysis of performance measures demonstrates that the Gaussian process regression
model based on Pearson universal kernel achieved comparatively better and reliable results and,
thus, should be encouraged in further research.

Keywords: soil permeability coefficient; Gaussian process regression; Pearson universal kernel;
radial basis function; polynomial

1. Introduction

One of the most essential variables governing soil’s fluid-flow characteristics is its
permeability. The importance of determining the soil permeability coefficient is widely
acknowledged, and is affected by a variety of parameters, including mineralogy, soil
density, soil structures, water content, void ratio, and others [1]. Ganjidoost et al. [2]
reported that three category factors remarkably affect the soil permeability coefficient,
namely, permeable soil parameters (density, clay content, viscosity etc.), inherent soil
parameters (Atterberg limits, particle size distribution, etc.), and compacted soil factors
(porosity, water content, density, etc.). Most of these factors are closely related to each
other. It was reported that the soil permeability coefficient was decreased by over 100
times when the percentage passing through sieve No. 100 increased by in the range of 0
to 7% [3]. Conducting several experiments with the difference in percentages of granular
and low-plastic marine soils, Shakoor and Cook [4] concluded that the soil permeability
coefficient noticeably increased by increasing the percentage of granular material. The
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coefficient of soil permeability is used to solve a variety of geotechnical issues, including
slope stability, and structure collapse due to ground settlement, seepage, and leakage. As a
result, several authors have attempted to establish empirical correlations between affecting
factors and permeability coefficients [5,6].

Field or laboratory tests can be used to determine the soil permeability coefficient.
It is shown that determining the soil permeability coefficient in the field is expensive,
complicated, time-consuming, and tedious [7–9]. However, obtaining undisturbed samples
for laboratory measurements of soil permeability coefficient is problematic. In particular,
laboratory samples are frequently reconstituted to match those collected in the field. As a
result of the devastation of soil fabric during sampling, laboratory test findings may not
reflect the true value of soil permeability in the field [10]. Due to the specific advantages and
disadvantages of each test, the soil permeability coefficient is calculated using a combination
of field and laboratory data [7,10]. To assess soil permeability, several researchers proposed
a regression that takes into account porosity, clay percentage, and sand particle size [11].
Several other researchers calculated soil permeability based on particle shape, grain size,
and bulk density [12,13]. As previously stated, soil permeability is greatly influenced by
particle size distribution; nevertheless, this is not true for all soils [9,14]. These empirical
relationships include limitations and uncertainties, according to Pham et al. [1] study.

Machine-learning (ML) algorithms have recently been successful in solving real-
world issues in a variety of fields, including civil and environmental engineering [15],
and geotechnical engineering [16–21]. Several studies have used ML methods to predict the
soil permeability coefficient, such as the adaptive neuro-fuzzy system (ANFIS), artificial
neural network (ANN), and hybrid optimization model of genetic algorithm-ANFIS (GA-
ANFIS) [2,9,22,23]. Sezer et al. [24] used an ANFIS to estimate granular soil permeability
and found that the ANFIS algorithm is effective at estimating granular soil permeability
when grain size distribution and particle shape are taken into account [22]. In comparison
to single ANN, ANFIS model, and the hybrid GAANN model, the hybrid model GAANFIs
outperformed in terms of prediction accuracy [2]. Soft computing-based models, in general,
are excellent techniques for predicting soil parameters; for instance, random forest (RF)
has been effectively used to predict soil properties including shear strength and perme-
ability coefficient [25,26]. In geotechnical research, the permeability coefficient (k) of soil
is an important component for designing civil-engineering structures on soil. Correlating
other soil engineering parameters using an empirical equation to estimate “k” may not
be correct [5,6,27]. Therefore, the aims of this study are (1) to develop new improved
prediction models based on the Gaussian process regression (GPR) on Da Nang–Quang
Ngai expressway development-project-site soil by using six soil parameters, such as liquid
limit LL (%), plastic limit PL (%), clay content CC (%), void ratio e, natural water content w
(%), and specific density γ (g/cm3) as inputs; (2) to divide data into training and testing
datasets with due attention to statistical aspects such as the minimum, maximum, mean
and standard deviation of the datasets. The splitting of the datasets is performed to find out
the predictive ability and generalization performance of developed models and later helps
in better evaluating them; (3) to compare the proposed models to the reference models
used in the published literature; and (4) to investigate the importance and impact of each
input parameter on the soil permeability coefficient.

2. Methodology
2.1. Data Catalog

The dataset comprises of 84 soil samples obtained from detailed design state investiga-
tions of the Da Nang-Quang Ngai expressway development project near Da Nang, central
Vietnam (Figure 1) and is reported in the research work of Pham et al. [28] (see Appendix A
for complete dataset). Further details about the collection, testing and type of soils can be
found in the Pham et al. [28] reference. Previous studies show that the coefficient of soil
permeability is a function of the liquid limit LL (%), plastic limit PL (%), clay content CC (%),
void ratio e, natural water content w (%), and specific density γ (g/cm3) [1,28]. It has been
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widely accepted, among researchers, that the input factors selected by Pham et al. [1,28]
constitute a complete and suitable set to estimate “k”. As a result, these input variables
were used to create the GPR model in the current study. The same input parameters related
to permeability were used to estimate the “k” (×10−9 cm/s) of soil. Researchers have used
a different percentage of the available data as the training and testing sets for different
problems. For instance, Pham et al. [29] used 60%; Liang et al. [30] used 70%; while Ah-
mad et al. [31] used 80% of the data for training. In this study, the data set was divided
into training (70%) and testing (30%) based on statistically consistency. The statistical
consistency of training and testing datasets was based on statistically consistency. The
statistical consistency of training and testing datasets has a substantial impact on the results
when using soft computing techniques, which improves the performance of the model and
helps in evaluating them better. Figure 2 depicts the cumulative percentage and frequency
distributions for all of the input and output parameters of the mentioned database utilized
in the modeling of soil permeability coefficient. The data points of every input parameter
are distributed over its range. The statistical analysis, i.e., minimum (Min), maximum
(Max), mean, and standard deviation (Std. Dev) of the training and testing datasets is
presented in Table 1.

Sustainability 2022, 14, x FOR PEER REVIEW 3 of 15 
 

of soils can be found in the Pham et al. [28] reference. Previous studies show that the co-

efficient of soil permeability is a function of the liquid limit LL (%), plastic limit PL (%), 

clay content CC (%), void ratio e, natural water content w (%), and specific density γ 

(g/cm3) [1,28]. It has been widely accepted, among researchers, that the input factors se-

lected by Pham et al. [1,28] constitute a complete and suitable set to estimate “k”. As a 

result, these input variables were used to create the GPR model in the current study. The 

same input parameters related to permeability were used to estimate the “k” (×10−9 cm/s) 

of soil. Researchers have used a different percentage of the available data as the training 

and testing sets for different problems. For instance, Pham et al. [29] used 60%; Liang et 

al. [30] used 70%; while Ahmad et al. [31] used 80% of the data for training. In this study, 

the data set was divided into training (70%) and testing (30%) based on statistically con-

sistency. The statistical consistency of training and testing datasets was based on statis-

tically consistency. The statistical consistency of training and testing datasets has a sub-

stantial impact on the results when using soft computing techniques, which improves the 

performance of the model and helps in evaluating them better. Figure 2 depicts the cu-

mulative percentage and frequency distributions for all of the input and output param-

eters of the mentioned database utilized in the modeling of soil permeability coefficient. 

The data points of every input parameter are distributed over its range. The statistical 

analysis, i.e., minimum (Min), maximum (Max), mean, and standard deviation (Std. Dev) 

of the training and testing datasets is presented in Table 1. 

 

Figure 1. Da Nang-Quang Ngai expressway project location map. 
Figure 1. Da Nang-Quang Ngai expressway project location map.



Sustainability 2022, 14, 8781 4 of 15
Sustainability 2022, 14, x FOR PEER REVIEW 4 of 15 
 

 

 

 

0%

20%

40%

60%

80%

100%

0

10

20

30

40

50

5.7 20.275 34.85 49.425 64

F
re

q
u

en
cy

CC (%)

Frequency Cumulative %

0%

20%

40%

60%

80%

100%

0

10

20

30

40

50

60

70

15.09 36.2925 57.495 78.6975 99.9

F
re

q
u

en
cy

w (%)

Frequency Cumulative %

0%

20%

40%

60%

80%

100%

0

10

20

30

40

50

60

18.9 36.4075 53.915 71.4225 88.93

F
re

q
u

en
cy

LL (%)

Frequency Cumulative %

0%

20%

40%

60%

80%

100%

0

10

20

30

40

50

60

70

12.2 22.85 33.5 44.15 54.8

F
re

q
u

en
cy

PL (%)

Frequency Cumulative %

0%

20%

40%

60%

80%

100%

0

10

20

30

40

50

2.58 2.62 2.66 2.7 2.74

F
re

q
u

en
cy

γ (g/cm3)

Frequency Cumulative %

0%

20%

40%

60%

80%

100%

0

20

40

60

80

0.462 1.005 1.548 2.091 2.634

F
re

q
u

en
cy

e

Frequency Cumulative %

Figure 2. Cont.



Sustainability 2022, 14, 8781 5 of 15

Sustainability 2022, 14, x FOR PEER REVIEW 5 of 15 
 

 

Figure 2. Frequency distribution histogram of inputs (in blue) and output (in green) parameter. 

Table 1. Statistical analysis of the study’s inputs and output. 

Dataset Parameters 

Clay 

Content, 

cc (%) 

Water 

Content, 

w (%) 

Liquid 

Limit, 

LL 

Plastic 

Limit, 

PL 

Specific 

Density, γ 

(g/cm3) 

Void 

Ratio, 

e 

Permeability 

Coefficient, 

k (10−9 cm/s) 

Training 

Min 5.7 16.97 19.5 12.2 2.58 0.486 0.003 

Mean 28.056 37.82 40.219 23.882 2.6715 1.0576 0.016 

Max 64 99.9 88.93 54.8 2.74 2.634 0.071 

Std. Dev 19.761 28.62 22.228 12.347 0.0413 0.7234 0.016 

Testing 

Min 6.7 15.09 18.9 12.5 2.63 0.462 0.004 

Mean 18.36 25.75 30.304 18.279 2.6836 0.7553 0.012 

Max 45.8 89.51 85.86 42.7 2.73 2.372 0.051 

Std. Dev 13.337 19.13 16.272 7.3879 0.0256 0.4856 0.012 

2.2. Gaussian Process Regression 

Gaussian process regression (GPR) is a probabilistic, non-parametric supervised 

learning method for generalizing nonlinear and complicated function mapping hidden in 

data sets. The GPR model is based on Rasmussen and Williams’ [32] assumption that 

adjacent observations should communicate information about each other; it is a means of 

describing a prior directly over function space. The mean and covariance of a Gaussian 

distribution are vectors and matrices, respectively, whereas the Gaussian process is an 

over function. The GPR model can recognize a prediction distribution that is similar to 

the test input. A GPR is a set of random variables with a joint multivariate Gaussian dis-

tribution for any finite number. Let M × N denote the input and output domains, respec-

tively, from which n pairings (Mi, Ni) are distributed independently and identically. For 

regression, let N⊆ ℜ; then, a GPR on � is defined by a mean function μ: �→ℜ and a co-

0%

20%

40%

60%

80%

100%

0

10

20

30

40

50

60

70

0.003 0.02 0.037 0.054 0.071

F
re

q
u

en
cy

k (x10₋9 cm/s)

Frequency Cumulative %

Figure 2. Frequency distribution histogram of inputs (in blue) and output (in green) parameter.

Table 1. Statistical analysis of the study’s inputs and output.

Dataset Parameters Clay Content,
CC (%)

Water Content,
w (%)

Liquid Limit,
LL

Plastic Limit,
PL

Specific
Density, γ

(g/cm3)
Void Ratio, e

Permeability
Coefficient, k
(×10−9 cm/s)

Training

Min 5.7 16.97 19.5 12.2 2.58 0.486 0.003
Mean 28.056 37.82 40.219 23.882 2.6715 1.0576 0.016
Max 64 99.9 88.93 54.8 2.74 2.634 0.071
Std. Dev 19.761 28.62 22.228 12.347 0.0413 0.7234 0.016

Testing

Min 6.7 15.09 18.9 12.5 2.63 0.462 0.004
Mean 18.36 25.75 30.304 18.279 2.6836 0.7553 0.012
Max 45.8 89.51 85.86 42.7 2.73 2.372 0.051
Std. Dev 13.337 19.13 16.272 7.3879 0.0256 0.4856 0.012

2.2. Gaussian Process Regression

Gaussian process regression (GPR) is a probabilistic, non-parametric supervised learn-
ing method for generalizing nonlinear and complicated function mapping hidden in data
sets. The GPR model is based on Rasmussen and Williams’ [32] assumption that adjacent
observations should communicate information about each other; it is a means of describing
a prior directly over function space. The mean and covariance of a Gaussian distribution are
vectors and matrices, respectively, whereas the Gaussian process is an over function. The
GPR model can recognize a prediction distribution that is similar to the test input. A GPR
is a set of random variables with a joint multivariate Gaussian distribution for any finite
number. Let M × N denote the input and output domains, respectively, from which n pair-
ings (Mi, Ni) are distributed independently and identically. For regression, let N⊆ <; then,
a GPR on Xis defined by a mean function µ: X→< and a covariance function k:X× X→<.
Kuss [33] is recommended for more information on GPR and other covariance functions.

Details of Kernel Functions

The kernel function is used in the GPR design process. In the literature, several kernels
have been discussed [34–36]. The following three kernel functions are used in this study:



Sustainability 2022, 14, 8781 6 of 15

1. Polynomial (Poly)

K(M, N) = (1 + (M, N))d (1)

2. Radial basis function (RBF)

K(M, N) = e−λ|M−N|2 (2)

3. Pearson universal kernel (PUK)

K(M, N) =

(
1/

[
1 +

(
2
√
||M− N||

2√
2(

1
ω ) − 1/σ

)2
]ω)

(3)

The kernel width (λ) in RBF kernel, and parameters, σ (controls Pearson width)
and ω (tailing factor of the peak) in PUK need to be established based on the precision
in prediction.

2.3. Performance Metrics and Evaluation

To examine the performance of GPR modeling, the coefficient of determination (R2),
correlation coefficient (R), mean absolute error (MAE), and root mean square error (RMSE)
were utilized. The following formula can be used to compute these parameters:

R =
∑n

i=1

[(
yio − yp

)(
yio − yp

)]
√

∑n
i=1

(
yio − yp

)2
√

∑n
i=1

(
yio − yp

)2
(4)

R2 = 1−
∑n

i=1

(
yip − yio

)2

∑n
i=1(yio − yo)

2 (5)

MAE =
1
N

n

∑
i=1

∣∣∣yio − yip

∣∣∣ (6)

RMSE =

√
1
N

n

∑
i=1

(
yio − yip

)2
(7)

where yio and yip represent the actual and estimated coefficient of soil permeability values,
respectively; yo is the average of the reference samples’ values; and n is the defined number
of data points.

The R2 and R are used to express the degree of collinearity between estimated and
actual data. The correlation coefficient, which ranges from 1 to −1, indicates how closely
actual and estimated data are related. If R is equal to 0, there is no linear relationship. If
R = 1 or −1, there is a perfect positive or negative linear relationship. R2 indicates how
much percentage of variance in estimated data the model can explain. R2 is a number
that ranges from 0 to 1, with higher values indicating less error variation and values over
0.5 considered acceptable [37,38]. The MAE indicates the mean of the estimated and actual
values. The adjustment has a better effect when the MAE is close to 0, meaning that the
prediction model more accurately describes the set of training data [39]. The RMSE is the
average magnitudes of the errors in predictions for all observations in a single measure of
predictive power. The RMSE is larger than or equal to 0, with 0 signifying that the observed
data is statistically perfectly fit. As a result, the lesser the values of MAE and RMSE criteria
are, the better the model. Visual representations such as scatter plots were also employed
to compare the performance of the established models. The flowchart of the methodology
of the present study is shown in Figure 3.
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3. Results and Discussion

To estimate the soil permeability coefficient, GPR models must be analyzed once they
have been developed. The outcomes of the evaluation show if the models have practical
value, that is, whether they can accurately estimate the soil permeability coefficient. As
previously stated, 70% and 30% of total dataset records were used as training and testing
sets, respectively, for modeling using the GRP approach.

The Waikato Environment for Knowledge Analysis (WEKA) software was used to
implement a number of kernel-function-based Gaussian process regressions in this paper.
The WEKA is a collection of machine-learning algorithms for data-mining jobs that is
available as open-source software. Hyperparameters must be adjusted in most machine-
learning algorithms. Table 2 depicts how the GPR-RBF, GPR-Poly, and GPR-PUK models’
essential hyperparameters were adjusted in this study. First, the models’ tuning parameters
were set, and then the trials were repeated until the best fitness measures in Table 2
were obtained.
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Table 2. The optimal tuning parameters for various regression models.

Model Optimal Tuning Parameters

PUK kernel {noise = 0.6, ω = 0.1, σ = 0.1}
Poly kernel {noise = 0.02}
RBF kernel {noise = 0.04, λ = 0.6}

Table 3 lists the developed models’ results and their comparative performance results
with other models reported in the literature. The top-ranked model was GPR-PUK, accord-
ing to the results. Based on the training results, the R were 0.9901, 0.964, 0.9548; R2 0.980,
0.929, and 0.912; MAE 0.0023, 0.0028, and 0.0031; and RMSE 0.0038, 0.0047, and 0.0048
for GPR-PUK, GPR-Poly, and GPR-RBF models, respectively, the GPR-PUK outputs were
verified to be the most compatible with actual coefficient of soil permeability values. Fol-
lowing that, GPR-Poly confirmed a high level of accuracy. Similarly, the GPR-PUK has the
highest value of R (0.9754) and R2 (0.951), then comes the GPR-Poly (R = 0.9624; R2 = 0.926)
and the GPR-RBF (R = 0.9387; R2 = 0.881) in the test dataset. The GPR-Poly, on the other
hand, has the lowest values of MAE (0.0034), followed by the GPR-PUK (0.0037) and the
GPR-RBF (0.0223), and the GPR-RBF has the lowest value of RMSE (0.0047), followed by
the GPR-PUK (0.0062) and the GPR-Poly (0.0634).

Table 3. Comparative performance of the GRP method and previously existing models.

Model
Training Testing

Reference
R R2 MAE RMSE R R2 MAE RMSE

RF 0.972 - 0.0023 0.0035 0.851 - 0.0049 0.0084
[1]ANN 0.948 - 0.0027 0.0047 0.845 - 0.005 0.001

SVM 0.861 - 0.0056 0.0078 0.844 - 0.0064 0.0098

M5P - 0.792 0.004 0.0064 - 0.766 0.0045 0.0081 [28]

GPR
(PUK) 0.9901 0.980 0.0023 0.0038 0.9754 0.951 0.0037 0.0062

Present
study

GPR (Poly
kernel) 0.964 0.929 0.0028 0.0047 0.9624 0.926 0.0223 0.0634

GPR
(RBF) 0.9548 0.912 0.0031 0.0048 0.9387 0.881 0.0034 0.0047

CatBoost 0.960 0.922 0.0031 0.0052 0.958 0.9178 0.0013 0.0031

“-“ respective performance measure value is not reported in the reference.

Figures 4a–c and 5a–c show the graphical correlation between measured (x-axis) and
estimated (y-axis) coefficients of soil permeability for the training and testing datasets,
respectively. The estimated values by GPR-PUK in the training and test sets have a high
consistency with the actual/experimental values but fewer error points, as illustrated in
Figures 4a and 5a. The trend line for GPR-PUK was drawn by comparing the observed
regression in Figures 4 and 5, and the GPR-PUK findings have the maximum inclination
to the line (see Figures 3a and 4a) in the training phase (R2 = 0.980) and testing phase
(R2 = 0.951), respectively. As a result, the GPR-PUK model proposed in this study can be
utilized to calculate the soil permeability coefficient, as the predicted value agrees well
with the actual value, indicating that this approach can accurately and effectively estimate
the coefficient of soil permeability.
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Figure 4. Comparison of the predicted and actual results of various kernel-function-based GPR
models in the training dataset: (a) GPR-PUK, (b) GPR-Poly, and (c) GPR-RBF.
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Figure 5. Comparison of the predicted and actual results of various kernel-function-based GPR
models in the testing dataset: (a) GPR-PUK, (b) GPR-Poly, and (c) GPR-RBF.

4. Comparison of Performance with Other Methods

In this section, the proposed GPR models were compared with other prediction models,
i.e., RF, ANN, SVM, and M5P or M5Prime, reported in the literature and the CatBoost
regression model, which is implemented in Orange software. The established values of user-
defined parameters identified from various runs are the number of trees (100), maximum
depth for CatBoost (10), and learning rate (0.042). In comparison to the findings of previous
research published in the literature by Pham et al. [1] and compared with the CatBoost
model, in the training dataset, the GPR (PUK) has the highest value of R (0.9901), followed
by the GPR (Poly kernel) (0.964), CatBoost (0.960), GPR (RBF) (0.9548), RF (0.972), artificial
neural network (ANN) (0.948) and the support vector machine (SVM) (0.861). The GPR
(PUK) and RF has the lowest MAE (0.0023), followed by the ANN (0.0027), GPR (Poly)
(0.0028), GPR (RBF) and CatBoost (0.0031), M5P (0.004) and the SVM (0.0056), respectively.
In contrast, RF has the lowest RMSE (0.0035) value in comparison to the GPR (PUK) (0.0038).
Similarly, in the testing dataset, the GPR (PUK) has the highest R value (0.9754), followed
by the GPR (Poly) (0.9624), CatBoost (0.958), GPR (RBF) (0.9387), RF (0.851), ANN (0.845)
and SVM (0.844). The ANN, on the other hand, has the lowest RMSE (0.001), and the
CatBoost has the lowest MAE (0.0013). The M5P model reported by Pham et al. [28] has the
R2 of 0.766, RMSE of 0.0064 and MAE of 0.004, in the case of the training dataset. Whereas,
in the testing dataset, there is good agreement between actual and estimated values in the
testing dataset, the M5P models’ error values are RMSE = 0.0081 and MAE = 0.0045 and the
determination coefficient is high (R2 = 0.766) in the testing dataset. In general, the proposed
GPR-PUK (R2 = 0.9754) has better prediction ability and has the highest goodness of fit
with the data used in the training and testing datasets when compared to other models in
this study.

5. Sensitivity Analysis

The developed models were evaluated using Yang and Zang’s [40] sensitivity analysis
for measuring the influence of input factors on the coefficient of soil permeability. This
approach [31,34,41–44] has been employed in a number of research investigations.

rij =
∑n

m=1(yim × yom)√
∑n

m=1 yim
2∑n

m=1 yom2
(8)

where n is the number of data values, yim and yom are the input and output parameters.
For each input parameter, the rij value varied from zero to one, with the highest values
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indicating the most efficient output parameter (which was k, in this study). The value of rij
must be close to 1 in order to assess the relationship between input and output variables.
Figure 6 depicts the relative importance of input factors based on experimental actual and
predicted coefficient of permeability values. As can be seen, the relative importance of
various parameters can be displayed as follows: w > e > LL > PL > CC > γ. In other words,
the w is the most significant factor for estimating the coefficient of soil permeability, while
γ is the least important parameter.
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6. Conclusions

In this study, the GPR modeling method was used to estimate the coefficient of the
permeability of soil with six input parameters: liquid limit LL (%), plastic limit PL (%), clay
content CC (%), void ratio e, natural water content w (%), and specific density γ (g/cm3).
The available data is divided into two parts: training set (70%) and testing set (30%). The
following is a summary of the findings of this study:

1. Comparing GPR models’ performance reveals that the GPR-PUK model gives more
accurate prediction results with the coefficient of determination being 0.951, achieved
from the correlation between experimental and estimated values of k.

2. The GPR-PUK model’s estimation of the soil permeability coefficient was found to
be more reliable than that of the ANN, SVM, RF, and M5P models reported in the
literature.

3. The findings of the sensitivity analysis demonstrate that different input factors have
varying degrees of significance on the coefficient of soil permeability as
w > e > LL > PL > CC > γ.

Development and improvement of the performance of models are a continuous process.
The GPR-PUK model can accurately estimate the permeability coefficient of the soil using
limited soil parameters, according to the findings of this study, but more research at
different sites is needed to prove its wider application. It is evident that the proposed
models are open to further modification, and that more data will result in much improved
prediction capacity.
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Notation:

ANN Artificial neural network
RF Random forest
SVM Support vector machine
GPR Gaussian process regression
MAE Mean absolute error
M5P M5Prime algorithm
RMSE Root mean square error
PUK Pearson universal kernel
RBF Radial basis function
XGBoost Extreme gradient boosting
R2 Coefficient of determination
R Correlation coefficient
k Soil permeability coefficient (×10−9 cm/s)
LL Liquid limit (%)
PL Plastic limit (%)
CC Clay content (%)
e Void ratio
w Natural water content (%)
γ Specific density (g/cm3)

Appendix A

Table A1. Dataset used in the present research.

S. No. CC (%) w (%) LL (%) PL (%) γ (g/cm3) e k (×10−9 cm/s)

1 44 93.73 75.62 46.8 2.59 2.453 0.029
2 21.7 20.71 24.58 13.5 2.72 0.639 0.01
3 51.8 20.98 38.17 20.2 2.73 0.625 0.003
4 9.7 18.02 20.51 14.2 2.68 0.605 0.007
5 46.9 95.58 82.25 53 2.6 2.514 0.026
6 12.7 22.71 28.5 17.8 2.69 0.671 0.01
7 47.5 85.35 71.24 40.5 2.62 2.275 0.014
8 59.4 24.95 41.87 22.3 2.74 0.713 0.003
9 9.2 23.97 26.52 19.8 2.67 0.723 0.008
10 55.3 98.01 73.63 40.1 2.59 2.597 0.035
11 44.8 79.96 75.45 43.6 2.59 2.083 0.039
12 51.1 73.75 66.96 35.8 2.61 1.966 0.061
13 46.1 25.78 38.03 17.5 2.73 0.808 0.003
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Table A1. Cont.

S. No. CC (%) w (%) LL (%) PL (%) γ (g/cm3) e k (×10−9 cm/s)

14 56.1 83.25 78.23 41.9 2.62 2.235 0.055
15 16.1 17.52 25.85 12.2 2.69 0.546 0.01
16 49 25.45 48.24 24.8 2.72 0.711 0.003
17 10.7 24.53 27.22 19.6 2.69 0.713 0.007
18 64 78.72 75.53 39.5 2.64 2.106 0.03
19 5.7 17.35 20.34 14.25 2.66 0.494 0.006
20 41.9 69.26 66.42 48.5 2.64 1.87 0.029
21 9.5 18.12 21.2 14.5 2.68 0.567 0.008
22 7.6 20.23 23.62 16.8 2.69 0.64 0.007
23 11 20.14 22.78 16.1 2.67 0.608 0.008
24 45 35.53 53.56 28.6 2.74 1.015 0.004
25 8.5 20.81 25.31 18.53 2.68 0.576 0.005
26 8.6 20.12 20.82 14.8 2.67 0.599 0.007
27 10.7 17.25 19.5 13.5 2.68 0.558 0.008
28 8.9 21.79 24.98 19 2.68 0.654 0.007
29 46.4 99.9 82.11 43.6 2.58 2.634 0.041
30 9.7 17.34 20.49 14.3 2.66 0.486 0.007
31 25.9 21.23 31.18 13.2 2.72 0.609 0.005
32 12.5 19.25 23.46 14.67 2.67 0.628 0.008
33 8.4 19.46 22.97 17.43 2.68 0.605 0.007
34 8.1 23.28 26.8 20.36 2.68 0.707 0.011
35 23.6 18.84 27.48 13.8 2.71 0.604 0.006
36 63.4 73.1 68.47 35 2.61 1.933 0.028
37 19 18.35 23.61 13.35 2.7 0.579 0.007
38 42.5 27.28 39.99 21.74 2.72 0.789 0.003
39 49.4 62.2 59.99 38.5 2.63 1.657 0.026
40 23.5 21.32 32.23 16.4 2.71 0.604 0.005
41 6.1 16.97 21.01 15.87 2.66 0.556 0.007
42 7.7 21.23 25.3 18.5 2.68 0.654 0.009
43 9.7 18.01 20.3 14.2 2.67 0.599 0.007
44 8.5 25.49 27.49 21.32 2.67 0.723 0.008
45 60.2 95.09 84.05 54.8 2.63 2.507 0.038
46 40.3 20.75 40.77 18.64 2.72 0.591 0.003
47 8.4 18.25 21.08 14.5 2.69 0.592 0.008
48 50.7 28.97 46.04 25.2 2.72 0.889 0.003
49 8.8 17.19 19.81 14.3 2.68 0.549 0.007
50 46.6 76.77 64.83 38.17 2.63 2.023 0.025
51 9.6 17.99 20.42 15 2.67 0.571 0.008
52 8.6 19.9 23 16.9 2.68 0.586 0.009
53 9.2 17.81 21 14.3 2.68 0.506 0.01
54 11.7 19.77 23.91 13.5 2.68 0.567 0.035
55 9.4 17.85 20.48 14.8 2.68 0.558 0.008
56 45.1 93.19 88.93 48 2.62 2.447 0.057
57 46.1 70.21 65.46 33.6 2.64 1.87 0.071
58 37.4 21.13 32.44 14.2 2.71 0.642 0.003
59 45.3 19.6 30.92 13.2 2.73 0.569 0.007
60 19 24.55 29.08 19.6 2.68 0.707 0.017
61 37.6 87.71 75.34 40.5 2.63 2.329 0.048
62 8 18.05 20.99 14.3 2.68 0.595 0.01
63 8.5 19.85 23.67 17.58 2.67 0.599 0.008
64 9.6 18.18 22.58 16 2.68 0.567 0.006
65 8.6 18.02 20.51 14.6 2.69 0.592 0.012
66 8.3 18.01 21 14.2 2.67 0.599 0.007
67 10.2 18.15 22.14 15.6 2.67 0.517 0.006
68 8.6 24.84 29.32 22 2.68 0.752 0.012
69 45.8 89.51 85.86 42.7 2.63 2.372 0.051
70 38.6 22.79 35.83 15.2 2.72 0.689 0.009
71 8.2 17.12 19.7 13.8 2.67 0.571 0.01
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Table A1. Cont.

S. No. CC (%) w (%) LL (%) PL (%) γ (g/cm3) e k (×10−9 cm/s)

72 26.5 21.89 30.98 17.4 2.72 0.619 0.005
73 24.5 18.28 28.11 12.5 2.71 0.522 0.006
74 21 20.62 28.62 17.4 2.69 0.592 0.014
75 9.3 21.14 23.89 18.53 2.68 0.686 0.008
76 8.4 18.02 21.1 14.5 2.67 0.552 0.009
77 9.8 18.07 20.62 14.5 2.68 0.567 0.01
78 30.4 22.23 39.53 18.64 2.72 0.648 0.004
79 9.8 22.03 23.92 17.8 2.68 0.644 0.008
80 6.7 18.91 21.49 15 2.69 0.582 0.007
81 43.4 25.6 34.5 15.6 2.73 0.717 0.005
82 40.1 25.53 36.11 19.2 2.72 0.755 0.01
83 8.7 15.09 18.9 12.63 2.66 0.462 0.008
84 9.4 19.64 23.8 17.2 2.67 0.648 0.009
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