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Abstract

Aims of research. A surface of revolution is generated by rotation of a plane
curve z = f{x) about an axis Oz called the axis of rotation. This paper provides infor-
mation on hyperboloids of revolution surfaces and their classification. Their geomet-
ric modeling, linear and materially nonlinear analysis are worked out.

Methods. Hyperboloids of revolution middle surface is plotted using the soft-
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ware MathCAD. The linear and materially nonlinear numerical analyses of thin
shells of the shape of an hyperboloid of revolution surfaces on stress-strain state
is given in this paper, using the finite elements method in a computer software
R-FEM, the material which we use in our model is concrete with isotopic nonlinear
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2D/3D stress-strain curve for materially nonlinear analysis and linear stress-strain
curve for linear analyses. Comparison is done with the result of the finite elements
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linear analysis of their strain-stress results.

Results. That displacements in the investigated shells subject to self-weight,
wind load with materially nonlinear analysis are bigger than which done by linear
analysis, in the other side the displacements is similarity subjected to free vibration
load case. Based on these results, conclusions are made for the whole paper.

Introduction

A surface of revolution is generated by rotation
of a plane curve z = f(x) about an axis Oz called
the axis of rotation of that surface. The resulting sur-
face therefore always has azimuthal symmetry. Hence,
an explicit equation of a surface of revolution can be
presented in the following form

z=f(r)= f(\/m), (1)

where r = ,/x? 4+ y? is the distance of a point of
the surface from the axis of rotation.

Right cylindrical and conical surfaces are exam-
ples of surfaces generated by a straight line when the
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line is coplanar with the axis, as well as hyperboloids
of one sheet when the line is skew to the axis. A sphere
is a surface of revolution of a circle around an axis
that passes through the center of the circle. If the cir-
cle is rotated about a coplanar axis, not crossing
the circumference, then it generates a torus.
Meridians are the lines of intersections of a sur-
face of revolution with planes passing through an axis
of rotation. All meridians of one surface of revolution
are congruent to the rotated curve. A plane passing
through the axis of the surface of revolution is called
the meridian plane. It is the plane of symmetry of
the surface. Any surface of revolution has the infinite
number of planes of symmetry. Parallels are the lines
of intersection of the surface with planes orthogonal
to an axis of rotation. Meridians and parallels of a sur-
face of revolution are the lines of principal curva-
tures. Any normal of surfaces of revolution intersects
its axis of rotation. A surface of revolution having
more than one axis of rotation is a sphere or a plane.
Tangents to all meridians in the points located
on one parallel circle are lines on the tangent conical
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(or cylindrical) surface of revolution, which is created
by the revolution of the tangent about the axis of
the rotation. A vertex of the tangent conical surface is
located on the axis of revolution. A parallel is called
the neck circle, if tangent planes to the surface of
revolution in the points on this circle are parallel to
the axis of revolution and the tangent cylindrical sur-
face is located inside the surface of revolution. A paral-
lel is called the equator circle, if tangent planes to
the surface of revolution in the points on this circle
are parallel to the axis of revolution and the tangent
cylindrical surface is located outside the surface of
revolution. A parallel is called the crater circle,
if tangent plane to the surface of revolution in the points
on this circle is perpendicular to the axis of revolution
and normal to the surface of revolution in the points of
this parallel are parallel to the axis of revolution and
form the normal cylindrical surface.

Umbilical points of a surface of revolution are pla-
ced on those latitudes on which a center of curvature
of a meridian is located on the axis of rotation. Sphere
is umbilical surface. Under Alexis-Claude Clairaut
theorem, the product of a radius of a parallel into co-
sines of an angle of intersection of the geodesic line
with the parallel is constant along the geodesic line.

A surface of revolution admits bending into an-
other surface of revolution and a net of lines of prin-
cipal curvatures is remained. Parametrical equations
of arbitrary surface of revolution are

r=r{rB)=r-sin(B)-i+r-cos(B)j+ f(r) k. (2)

Assume an equation of a meridian in the form
r = r(0) where a is the angle of the normal to the sur-
face passing through a given point with the axis of
rotation (Figure 1) then » = R; sin(a).
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Figure 1. Kinematics of generating of a surface of revolution

Coefficients of the fundamental forms of the sur-
face of revolution can be obtained with the help of
formulas:

A=A = Ry(a),
B = B(a) =r = R, - sin(a),

TEOPUA TOHKIX OBONOYEK

F=0,L=R,(),M=0,N=R, sin(c), (3)

where R; is the principal radius of curvature of the me-
ridian that is the coordinate line of a, R; is the princi-
pal radius of curvature of the parallel.

The lines a = const are parallels and the lines f =
const are meridians. If an equation of a meridian is
given in the form » = » (z) (Figure 1) then an equa-
tion of a surface of revolution can be written with the
help of three scalar equations:

x=r-sin(B),y =r-cos(B),z=2 (3°)

where r = r(z) is a function that determines the shape
of the meridian (a profile curve);  is the angle of ro-
tation of the plane of the meridian and then

A=V1+71r%2F=0,B=71(2),

1 r’ 1 1
ki=—=— ko=—=—— 3
1R ke = = o G7)

(1+1'2)2

where the derivatives with respect to z are denoted by
primes; k;, k; are principal curvatures of the surface.

Normal curvature of a surface in the direction of the
meridian is equal to a curvature of the meridian, i.e., &;.
Meridians of surface of revolution are geodesic lines.
Catenoid is the only one minimal surface of revolution.
One-sheet hyperboloid of revolution, right circular cy-
linder and right circular cone are the only ruled surfaces.
The last two surfaces are the only developable surface of
revolution. If a beginning and an end of unclosed rotated
line are placed on an axis of rotation, then the surface of
revolution will be the closed one.

1. Geometric Modeling

One-sheet hyperboloid of revolution is genera-
ted by the rotation of hyperbola about the z-axis (Fi-
gure 2, a). These are twice ruled surface.

= _Z =y (4)

Thorough every point of the surface, two straight
lines, lying on the hyperboloid, pass (Figure 2, b).
A hyperboloid can be constructed by rotation of a gene-
ratrix straight line about the z-axis but the straight gene-
ratrix and the axis are skew lines (Figure 2, ¢ and d).
The surface is the only one ruled surface of revolution of
negative Gaussian curvature. The parallel lying in a plane
z = () has a radius » = ¢ and is called a waist circumfe-
rence that represents a geodesic line. All of the rest of the
geodesic lines besides the equator go from infinity coming.

Nearer to the equator. One of them intersects
the equator and goes to other half of the surface but
others do not reach the equator and touching the some
parallel, turn back; the third geodesic lines come nearer
asymptotically to the equator.
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Figure 2. Varieties of hyperboloids of revolution

2. Forms of definition of
one-sheet hyperboloid of revolution

1) Implicit equation (canonical equation):

(?+y?) 22
T e b ®)

If a = ¢, then a hyperboloid is called a right hy-
perboloid.

2) Parametrical equation (Figure 2, ¢ and d):

x=x(u,v) = —a-sin(u) Fa-v -cos(u),

y =y, v) =a-cos(u) ¥Fa-v -sin(u),
z=2z(w) = +Fc-v. (6)
Coefficients of the fundamental forms of the surface:
A2 =a? - (1+v%),B?=a%+ c%F = %Fa?

_ Fea?(1+v?) _ a’c
- (A2-B2—F2)05 ) - (A2-B2—F2)0.5 )

N=0. (7)

Coordinate lines v (u = const) coincide with one
system of straight lines but the lines u are the paral-
lels of the hyperboloid of one sheet. In Figure 2, ¢
the hyperboloid is shown, taking into consideration
the upper signs in the parametrical equations (6) of
the surface. The lower signs are taken into account in
Figure 2, d.

3) Parametrical equations (Figure 2, a):

x =x(r,B) =r-cos(p),
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y =y(r,B) =r-sin(B),
z=1z(r,p) =% )
Coordinate lines » and B (parallels and meridians)
are the lines of principal curvatures.
4) Parametrical equations (Figure 2, a):

a

x=x(rz) = %-\/cz + z2 -sin(B),
y=y(rz) = %-\/cz + z2 - cos(B),

z(r,z) = z 9)

Coordinate lines z and B (parallels and meridians)
are the lines of principal curvatures.
5) Parametrical equations (Figure 2, a):

x = x(a,B) = a- ch(a).cos(B),
y =y(a,B) = a-ch(a).sin(p),
z = z(a,B) = ¢ sh(a). (10)

Coefficients of the fundamental forms of the sur-
face and its principal curvatures:

A% = a-ch(a),B? = a? - sh?(a) + c? - ch?(w),
F=0,

] ch?(a)

Cc ac
L=—-a-c ,K1=_E,K2=E. (11)
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3. Overview of literature

The most complete work on the history of the de-
velopment of hyperboloid structures in domestic con-
struction is the monograph of L. A. Petropavlovskaya [1].

The article [2] gives a comparative analysis of
the stability of the initial form of equilibrium of reti-
culated shells in the form of single-sheeted hyperbo-
loids of revolution. The analyses are performed both
considering only geometric and double (geometric and
physical) nonlinearity. The influence of the shape of
the generatrix of a single-sheeted hyperboloid of re-
volution and the physical nonlinearity of the material
on its stability in the indicated formulations of the prob-
lem is considered. The curves of the equilibrium states
of the shells under load acting on the upper base are
given.

In the review article [3] are summarized principal
achievements of science and engineering in the sphere
of design, construction, and static, vibrational, and buck-
ling analysis of thin-walled constructions and buildings
in the shape of hyperbolic surfaces of revolution. These
shells are useful as hyperbolic cooling towers, TV to-
wers, reinforced concrete water tanks, and arch dams.
They are also used as supports for electric power
transmission lines and as high chimneys. Several public
and industrial buildings having the hyperbolic form are
described in the review. The basic results of theoretical
and experimental investigations of stress-strain state,
buckling, and vibration are summarized. The influence
of temperature and moisture on the stress-strain state of
the shells in question is also analyzed.

In book [4] J.N. Reddy presents the theory and
computer implementations of the finite element me-
thod as applied to nonlinear problems of heat transfer
and similar field problems, fluid mechanics (flows of
incompressible fluids), and solid mechanics (elastici-
ty, beams and plates). Both geometric as well as mate-
rial nonlinearities are considered, and static and tran-
sient (i.e.: time-dependent) responses are studied.

S.I. Trushin and Ph.I. Petrenko in paper [5] inves-
tigated the influence of form of hyperboloid’s genera-
trix on its stress-strain state, stability and fundamental
frequency. The results of numerical analysis of reticu-
lated shells under different loads are given.

The article [6] studies the impact of the shape of
the generatrix of a discrete reticulated shell in the form
of a one-sheet hyperboloid of revolution on its stabi-
lity. It studies the stability of a reticulated hyperbo-
loid with five types of frames formed from the gene-
ratrices of the hyperbolae with one asymptote. For
comparison, the study examines an additional frame
with rectilinear generatrices — the asymptotes of hy-
perbolae generatrices, the properties of which are dif-
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ferent from those of shells with a curvilinear rod net-
work. The work presents the results of the numerical
analysis of the reticulated shell performed with the help
of finite element method in a geometrically non-linear
setting. The article also presents the curves of the equi-
librium states of the shell under horizontal and vertical
concentrated loads. The data obtained has made it pos-
sible to conclude on the impact of the used generatrix
on the stability of the frame of reticulated shells in
the form of hyperboloid of revolution.

4. Linear and materially nonlinear analyses (MNA)
of thin shells in the shape of
one-sheet hyperboloid of revolution

In the linear material model, the stress-strain re-
lationship must be linear with slope £, Young’s Modu-
lus (Hooke’s law):

c=E-¢ (12)

where o is the normal stress and ¢ is the strain.

Material nonlinearity is a concern whenever the
response at the operating loads causes strain levels in
a material beyond the portion of the stress-strain curve
that can reasonably be approximated as linear. Many
materials have curves that deviate small amounts from
linear for large amounts of strain so that, with all
the other uncertainty in the model, there would be little
value in a nonlinear material model. On the other hand,
many curves deviate from linear almost immediately
to such a degree that only the roughest trend studies
can be made with a linear approximation.

The constant of proportionality in a linear mate-
rial model is Young’s Modulus. This represents the
slope of the linear portion of the stress-strain curve
(Figure 3). For highly nonlinear materials, this mo-
dulus may only be applicable at very low strains.

STRESS
(0)

A=

STRAIN
(€)

Figure 3. Stress-strain curve

Nonlinear material models of common engineer-
ing materials are defined by specifying their stress-
strain curves. Most stress-strain curves represent on-
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ly the tensile response. When a material has the same
response in tension and compression, it is said to be
symmetric. Cast iron is a good example of an asym-
metric stress-strain behavior as it is stronger in com-
pression than tension.

Types of nonlinear materials

There are several types of material nonlinearity
that might be present in a structural analysis: 1 — non-
linear elastic; 2 — bi-linear elastic-plastic; 3 — multi-
linear plastic; 4 — hyperplastic; 5 — viscoelastic.

Simplified models of stress-strain curves are shown
in Figure 4.

<o G

£

Linear elastic

Multi-linear plastic

Bi-linear elasto-plastic

Figure 4. Types of nonlinear materials

A nonlinear material model can be defined as non-
linear elastic where the part returns to a zero strain
state when the load is removed or elastic-plastic where
permanent strain begins to accumulate after reaching
the yield strength of the material.

Additionally, an elastic-plastic stress-strain curve
can be input as bi-linear, where only an elastic modulus
and a plasticity or hardening modulus are entered.
It can also be defined as a multi-linear stress-stress
curve where the true nonlinearity of the plastic range
can be captured with a series of points.

5. The comparison of the linear
and materially nonlinear results MNA

Let us consider concrete ¢c20/25 as a material for
our model. The shell are subject to the following loads:
1 — self-weight; 2 — wind load on + Y direction.
The shells are investigated with fixed supports. The load
combinations in the used software RFEM is: (1.4- self-
weight + 1.6-wind loads) according to Eurocode.
The dimensions for our model are the following:
height 36 m, the upper diameter 20 m, the diameter
on base 31.5 m, thickness 15 cm.

For materially nonlinear analysis we use isotopic
nonlinear 2D/3D concert as following (Figure 5).
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Figure 5. FE design model of thin shells in the shape of
one-sheet hyperboloid of revolution in RFEM

The results of our investigation are showed the ma-
ximum displacements for our structure under loads at
three direction with linear and nonlinear analysis (Fi-
gures 6 and 7).

Linear and materially nonlinear analyses are made
for this structure under free vibration to show the in-
fluence of materially nonlinear analysis under free vib-
ration.

Let us assume three vibration pattern for our ana-
lysis, the results are showed in table.
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Uz =—0.09 cm Overall displacement U = 0.15 cm

Figure 6. Linear analysis
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Figure 7. Nonlinear analysis
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Table
Displacements Mode Linear and nonlinear analysis Mode | Natural frequency, Natural period,
fHz] T[s]
1 0.937 0.76
Ux (max, min) cm 2 0.98 0.64 1 3.676 0.272
3 091 0.91
1 0.64 0.98
Uy (max, min) cm 2 0.76 0.93 2 3.678 0.272
3 091 0.91
1 0.068 0.068
Uz (max, min) cm 2 0.067 0.067 3 4.118 0.243
3 0.11 0.11

Model Uz displacement Model 2 Uz displacement Model 3 Uy displacement

Figure 8. Models of Ux, Uy and Uz displacements

Conclusion

The linear and the materially nonlinear analyses
(MNA) investigations of the stability behavior of thin
shells in the form of an hyperboloid of revolution by
the software program R-FEM show that for both lin-
ear and materially nonlinear analyses:

216

— the values of displacements under materially non-
linear analysis are bigger than those obtained from
linear analysis subject to self-weight and wind load;

— there is a similarity between the results of linear
and materially nonlinear analyses for this investiga-
ted thin shell subject to free vibration.

THEORY OF THIN ELASTIC SHELLS
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Annomayus
Ienu. IloBepXHOCTh BpallleHUsl 00pa3yeTcsl BpallleHUEM IUIOCKOH KpHBOM

z = f(x) Bokpyr ocu Oz, Ha3pIBa€MO OCHIO BpalleHus. B craten paccMmaTpuBa-
IOTCSI IOBEPXHOCTH B ()OpMe THIIEPOOIONIOB BPALICHHUS U MX KJIACCU(PUKAIIHS.
[IpoBeneHBI UX TEOMETPUUECKOE MOJCIINPOBAHHUE, IMHEHHOE U MaTEepHAIbHO-
HEJIMHEHOE HCCleI0BaHusl.

Memoow. CpeiHHAs TOBEPXHOCTh THIIEPOOJION/IOB BpPAIICHHSI TIOCTPOCHA
¢ ucnonb3oBanueM nporpammbl MathCAD. BeinosiHeHb! TMHEHHOE U MaTepH-
QJIbHO HEJIMHEIHOE YUCIICHHBIE UCCIEI0BAHUS HANPSXKEHHO-1e()OPMUPOBAHHOTO
COCTOSIHUSI TOHKUX 0007104eK (hOpMBI FHIIEpOOIONIa BPAIlCHUS C IPUMEHEHUEM
METO/1a KOHEUHBIX 3JIEMEHTOB B KOMIIbIoTEpHOI nporpamme R-FEM. Mcxoaubim
MaTepuagoM sBJsIcs OETOH ¢ M30TONHOM HenuHelHo# 2D/3D-xpuBoil Hamps-
XKeHusl — gedopManuu Uil MaTepUaIbHO-HENUHEHHOIO UCCIIEA0BaHUs U JIMHEH-
HOU KpUBOH HampsbkeHUs — AedopMmanuu Juist JuHelHoro pacuera. [Ipeacrasiue-
HO CpaBHEHHE PEe3yJbTAaTOB JIMHEWHOTO M HEMHEHHOTO HANpPsDKEHHO-IedopMu-
POBaHHBIX COCTOSHHM.

Pezynvmamui. IlepeMertieHust B McciIeJOBaHHBIX 000I0YKaxX O] JIeHCTBU-
€M COOCTBEHHOTO Beca M BETPOBOH HArpy3KH IpPH MaTepHabHO-HEIMHEHHOM HC-
CJICIOBAHNH HAMHOTO IPEBBIIIAIOT NEepeMeleHus Ipy JuHeiiHoM pacuere. C npy-
TOil CTOPOHBI, NIPH BO3JICHCTBUU CBOOOJHOIN BHUOpAIMU MEpPEMEICHHS TIPU JIH-
HEIHOM M MaTepHaJIbHO HEJIMHEHHOM pacdeTax paBHbI. BBIBObI, clienaHHbIe Ha
OCHOBE IIOJTyUY€HHBIX JaHHBIX, IPUBECHBI B CTAThE.
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