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Application of remote sensing for monitoring of flood areas
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Traditional measurement techniques “in situ” sometimes fail to magnify the spatial
distribution of floods. For these cases, the remote sensors provide methodologies of very low
economic cost and high reliability when mapping flooded areas and quantifying the damages.
Due to the dynamic nature of these phenomena, it is necessary to use satellite images of high
temporal resolution, however this type of images usually have a low spatial resolution. In relation
to this problem, traditional classification techniques are not reliable enough for flood delineation
and monitoring since they use “hard methods” of classification, where the coarse pixel is
assigned a single type of coverage. On the other hand, “smoothed methods” have the ability
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subpixels; to assign different kinds of coverage to the interior of the thick pixel. The present investigation

resolution; makes the application of a sub-pixel analysis methodology (sub-pixel analysis — SA) for the

coverage monitoring of flooded areas. The improvement of the delimitation is achieved with the use of
topographic attributes provided by a digital terrain model (DTM). The methodology was applied
to the monitoring in the Great Depression Momposina, specifically to delineate the swamp of
Zapatosa.

Introduction phenomena. It is a topic of general interest, to have a

tool at your fingertips which allows you to take free
information from the different remote sensors such as
the MODIS and Landsat and to transform it into useful

The human, always in expansion, takes territory away
from nature, increasing the affectation caused by natural

disasters, such as earthquakes, tornadoes, hurricanes,
storms, floods, droughts, etc. Some of these phenomena
can be decimated in their damages with systems early
alarms and their evolutions can be monitored. This is
why it is important to use tools such as satellite images
to support the characterization and study of terrestrial

information to delve into the natural phenomena that
overwhelm the Earth.

Empirical sciences such as topography and
photogrammetry have been emerging, as well as
meteorology for the climatological study. However,
several of these disciplines require obtaining data from
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a fieldwork, using specialized teams in each of the areas.
Therefore, they require imminent displacement to the
study area, sometimes finding unsuitable conditions for
work, due to difficult accessibility. Man has been able to
facilitate tasks that do not require physical presence,
equipment such as satellites solve problems in which
there were technical limitations, thus facilitating tasks
such as obtaining instant results [1].

Currently, there is the geographic information systems
(GIS), which provide effective tools for dealing with
temporary space data, in addition to which they are very
effective for archiving, displaying, analyzing and
modeling geographic data when combining socio-
political data such as borders and inhabited areas, these
tools are useful for correct decision-making [2]. An
example of this was the use of a GIS implemented by
the Center for Research on Drought (CEISS) in
Chihuahua (Mexico) as support for decision making
which allowed permanently assess the areas that were
affected by drought [3].

Another application of this technology is the
magnification and mapping groundwater in northern
Ethiopia, more precisely in the Valle de Raya [4]. The
representation of this information was made graphically
through a GIS, represented by layers schematic data such
as areas of plant cover, populations, location of major
livestock producers, until the presence of pollutants in
watercourses. With the superposition of these data, very
complete models are generated capable of modeling the
behavior of droughts [3]. The dynamics of these
phenomena is very high to achieve an adequate analysis
satellite images with high resolution are required. The
problem with this type of images is their temporal

resolution since the time between each of them is very
long, relatively with the duration of these natural
phenomena. However, there are satellite images with a
higher temporal resolution, making possible in the best
of cases a daily collection of information to carry out a
valid monitoring. Because the spatial resolution of these
high-resolution temporal images is, in general, very poor,
many of the relevant data are lost because of the quality
of the information. In response to this problem, there
are sub-pixel analysis methodologies (sub-pixel
analysis — SA), which use satellite images of moderate
spatial resolution for these analyzes, demonstrating an
efficiency of 80 % in the correct allocation of flooded
areas [5]. As the main input of this project, we have a
code base in language “C”, which is capable of executing
the methodology; as an input parameter it receives a
satellite image of moderate spatial resolution, and as a
result it performs a classification of the image scenario
at the subpixel level (with spatial resolution finer than
the original satellite image). To verify the goodness of
the classification, confusion matrices will be used
between the result and a high-resolution satellite image.

1. Materials and methods

The sub-pixel methodology developed in that work
was initially proposed in [ 5] where different mathematical
models are used to validate hypotheses about the
relationship between the spectral signatures, their
proportion within and behavior in relation to the
topography in a satellite image, which in the present
work received modifications, which increase its
effectiveness. The process of operation can be
summarized in the Figure 1.
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Figure 1. Sub-pixel methodology [5]
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1.1. Linear mixing model (LMM)

The surfaces have unique spectral signatures which
can be identified, therefore when a sensor of low spectral
resolution that measures a thick pixel, it contains the
linear combination of the radiations that are reflected
initsinterior. These types of well-discriminated coverages
are called pure classes. However, the objective of the
LMM is to abstract from the gross pixel the quantity of
pure classes and the respective proportion, of the whole
image and of the bands used in the analysis. To solve the
previous unknowns the analysis is based on the solution
of a system of equations with restrictions. Therefore, as
was proposed in [5], the mathematical model can be
represented in the following way:

R=E-f+e.
Fulfilling

|
0< fy <1’ M

{IT xf=1
where R is the vector n x [ that has the multispectral
observation of the gross pixel; E represents the n x ¢
matrix, where the elements E g, ) are the spectral
response of each pure class ¥ in the band Q; f'is the
vector containing the solution of the coverage fractions;
¢ is the residual error n x [ vector; [ vector symbolizes
¢ x I, where " =1, 1, ..., 1]; n is the number of bands
used and c is the number of coverage classes.

The laws are very simple, the first law tries to express
that the sum of the proportions of coverages within the
gross pixel must be equal to one and is called sum
constraint equal to one [5]. The second law proposes the
restriction so that the contribution of each coverage is
positive and in no way can be negative (positive
restriction).

The solution can be found by raising the LMM as an
optimization problem is based on the equations of this,
that is, the equation of the vector of proportions R adding
an error to the measurement, and restrictions of sum
one and non-negativity, being the model mathematical
proposed in [7].

At this point Lagrange multipliers are the ideal tool
proposed by [7] to solve the optimization problem posed
above, for this case the Lagrange equation would be given
as follows:

L(fis for oo for M) =

[Ry-R *]z—kx[iﬁy—l}. )
y=1

M:

o]
I

1
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For the equation (2), we consider that R, = R(Q),
R+ = R(€)*, f =A(P) to have an easier notation. In the
previous equation, it is well known that only the restriction
of sum equal to one of the LMM is considered, due to
the complexity of the non-negativity restriction, this will
be implemented later if it becomes necessary.

When deriving and equaling zero, we propose a
system of equations with ¢ + 1 equations, which have as
unknowns f}, f5, f3, ..., f. and A, therefore the resulting
derivatives are:

oL ¢
_— =|]|— 3
- 0=1 éf. (3)

This system can be solved with the following
expression:

Kxf,=C. 4)
Within this matrix K;; and C; symbolize the following

equations:

n

K; =2xY E(k, j)xE(k,i). (5
k=1

C=2x S R(K)x E(k, j). ©)
k=1

For this case, the matrix K'is symmetric. To solve this
system of equations is used the factorization type LU
(lower — upper) of the matrix K. The factorization by
the method of Cholesky is not possible since K is semi-
definite and positive. The sum constraint equal to one
is guaranteed in the system K x f, = Cf,, however the
non-negativity constraint cannot be fulfilled since the
solution vector f; can be less than zero.

According to the work [5], a solution for the vector
/, is proposed within the region considered feasible. At
the moment of presenting a negative value in the vector
Ji the construction of a new system identical to the
previous one is considered, however in this the k-th row
and column of the matrix is eliminated, in the same way
for the vectors f, and C will eliminate the k-4 element.

Krep % fr-rep = Crep- (7

With the vector f, _rgp the system is solved, so it is
possible to complete the solution vector f, using values
of 0 in the k-th position, if the negative values persist in
the vector f,_rgp, it is possible to repeat the elimination
and impersonation procedure of these values by zero if
they are already presented once this method has been
executed. The use of Lagrange multipliers brings greater
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speed in the identification of proportions as a benefit,
because it works more like an analytical process and not
an iterative one according to [5].

1.2. Spatial coherence analysis

As it proposed in [8] the problem calve to make a
correct classification sub-pixel is to assume that there is
a certain relationship or spatial dependence between the
sub-pixels inside and around the thick pixel, at the
moment of dividing the thick pixel into small units or
sub-pixels, a class of coverage is assigned to the new unit
within the thick pixel.

In [9] they formulate the sub-pixel map as a linear
optimization problem: it is assumed that the LMM
contains C classes of coverages and that the resolution
of the coarse pixel is divided into N sub-pixels. The
number of sub-pixels that is assigned to coverage class i
is NCi, derived from the fractional image. The spatial
dependence will be calculated for each coverage class i
and for each sub-pixel j. In each sub-pixel must be
assigned a value of 1 or 0 for each coverage class, the
value of 1 indicates that in place there is presence of the
target coverage class, therefore the problem becomes the
assignment of classes of coverage to sub-pixels and
maximize spatial dependence. For the construction of
the mathematical model, the variables X;; were used and
defined as:

Matriz de costos
para la dependencia
espacial Cij('¥).

Pixel clasificado.

l

if the sub-pixel j contains
the coverage class i, else 0.

Therefore, the mathematical model can be expressed
as follows:

C N
max (z)=Y Y X; xC;. (8)
i=1 j=I
Assigning the following to the above equation:
C
YX;=1,=12..,N; )
i=I

N
YX;=NCi i=1,2,...,C.
Jj=1

(10)

After declaring the mathematical model, they proceed
with the construction of a cost matrix for each type of
coverage. The previously proposed restrictions are
understood as:

— the first rule ensures that only a single coverage
class is assigned to the sub-pixel (i, j);

— the aim of the second rule is to ensure for the NC™*)
sub-pixels the class ¥ is assigned correctly.

l

a) En este punto la cohertura cs
modificada v organizada
debido al peso que tiene ¢l centroide
de Ia cohertura.

b) Usando un MDT es posible evitar

al momento de inundar zonas

¢) En este punto s¢ combinan
los criterios de ¢l MMIL ¥
los de Ia dependencia espacial.

costos innecesarios,

mas hajas.

Figure 2. Scheme use cost matrix for the analysis of spatial coherence [6]
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These functions and restrictions are linear in nature,
so they can be solved by applying linear programming [8].

1.2.1 Costs Matrix

At this point, the cost matrix C;*) is necessary to
solve the system of equations, to use this tool we start
from previous hypotheses who was developed in [5]
about the distribution of classes within the pixel:

— for there to be a class grouping ¥ it must be given
around a centroid of that class;

— the topography is a determining factor for the
identification of “water” or “flooded” zones, therefore
these classes will always be generated and will flow
towards low areas.

The diagram (Figure 2) explains how the cost matrix
works for spatial coherence, in the lower part of the
diagram are the assignments of the “water” or “flooded”
coverage made by the cost matrices, where the dark
colors represent the lower values and vice versa in relation
to light colors that represent high values.

a) The cost matrix is generated, considering only the
principles of spatial coherence, using the distribution of
the coverage fractions a centroid has been generated,
in this case the costs will be lower depending on its
proximity to it.

b) The cost matrix generated with the principles
related to the DTM of the gross pixel area is presented,
in this case, the lowest values in the DTM will be the
indicators for the lower areas.

¢) The combination of the criteria of a and b allows
a sub-pixel assignment more coherent with principles
of spatiality (neighboring values) and topography.

1.3. DTM and DOD drainage networks

Through a modification of the method proposed in
[10], which generates a cost matrix, which aims to
calculate the route with the lowest cost from a point (a)
to a point (b). Specifying the DTM becomes the cost
matrix and points (a) and (b) are the accumulation
zones, in this way there will be drainage lines or lines
between the two points, which in turn are based on the
amount of times that drainage lines cross a pixel, verifying
its class whether it is “flooded” or “dry”.

This method is modified [5] in which the proposed
solution uses the directions of the flow to generate
aggregation of new “flooded” class pixels. As inputs to
this method use the map of drainage directions and the
map of accumulations, which are products of the DTM.

This process is based on assigning with a value of +1
to the class pixels “flooded” and a value of —1 to the
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“dry” class pixels in the initial conditions. As a premise,
an amount # of sub-pixels will accumulate in the
direction of the flow, as long as it is “flooded” and n—1
for the sub-pixels of the “dry” class. It is necessary to
highlight that this algorithm works using the direction
of the flow. The algorithm only accumulates for those
sub-pixels that have a value greater than zero, in the case
of the sub-pixels of value —1 upstream it will not subtract
or add to the value of the downstream pixel, however
this can become zero because it has a sub-pixel “flooded”
Upstream, as a final result, all those sub-pixels that end
with a positive value, and different from zero will be
classified as “flooded”.

2. Results

To execute the sub-pixel methodology and the
drainage network methodology in the digital terrain
model, the commands called i.subpixel and i.dod were
designed in [5] to be executed in the GRASS GIS free
software. However, due to software update effects, these
had to be modified in some of their functions present in
their base code to work correctly in GRASS GIS V.7.0.

2.1. Study area for implementation of
the methodology

The study area corresponds to the water mirror of the
depression Momposina called “Cienaga Candelaria
Rincon Avisperos”, belonging to the complex of bodies
of water known as “Cienaga de Zapatosa”. This water
mirror is formed in a delta of Magdalena River. For this
study area, the examples and results are based on the
DTM present in Figure 3. This DTM was processed and
used with a spatial resolution of 50 meters, which is a
resampling of the digital topography with a spatial
resolution 30-meter original downloaded from the
official USGS website.

2.2. Results command i.subpixel
(level 0 of classification)

Two types of products can be obtained from the
i.subpixel command, both of them very important for
the analysis of the types of coverages present in our study
area. The first of these products are the maps of coverage
fractions, which will be equal to the number of classes
that are defined at the time of the supervised classification;
that is, each map will show only the pixels of the class
in which it is focused, the rest will have a value of 0, the
value of the pixels in which the class is present will be a
function of the proportion of that class in that pixel.
Below in Figure 4 you can see the maps of coverage
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fractions for the five classes resulting from the supervised
classification, these focused on identifying water bodies,
bare soil and vegetation.

The maps of proportions of coverage provide us with
the vision of the distribution of the different classes of
coverages over the gross pixel, those presented and
produced by this command are in units of percentage
from 0 to 100%, where 0 is the absolute absence of the
class in question and 100% as the true and absolute
presence of this. In the maps, the units go from zero to
10 000, the highest value being the equivalent of 100%.

As aresult of the methodology (classified map of level
0) is the map of Figure 5. This figure shows the base map
for the following steps. The map originally had a
resolution of 500 meters and the resulting i.subpixel
module has a resolution of 50 meters. To make this
analysis clearer, this map is reclassified into two clear
classes, one referring to bodies of water and the other
referring to coverings of soil and vegetation.

Figure 3. Digital terrain model of the study area

Source: U.S. Geological Survey. URL: www.usgs.gov

EARTH SCIENCE

Figure 4. Maps of coverage fractions for the defined classes:
1, 2, 3 — refer to zones with presence of water; 4, 5 — are zones of
vegetation, and bare ground respectively
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Figure 5. Map two classes (i.subpixel):
yellow — water class; red — dry class

2.3. Results command i.dod
(level 1 classification)

This command receives as inputs the accumulation
maps and drainage directions obtained from the digital
terrain model in the final resolution of the i.subpixel, i.e.
50 m, and the map resulting from level 0 of the
classification. At this point, the working resolution must
be the resolution of the output map of the i.subpixel
command. The map resulting from this module is
presented in Figure 6, which has the same sub-pixel
classification map metadata, it should be noted that the
i.dod module can be applied several times to improve its
effect. It is noticeable how the algorithm extrapolates
the “water” class zones using drainage and accumulated
flow networks, both in the lotic water body and in the
Ientic water body.

2.4. Correction filters r.neighbors

This part of the process can be alternated between
the two previous parts that is the correction by filters can
be executed before executing the module i.dod, to reduce
the noise; the effect of the i.dod module will be clearer.
After the i.dod is also very effective to erase unnecessary
data by the execution of this. This filter was executed
with the popular criterion, and works with a neighborhood
algorithm, that is, the most recurrent class in the
neighborhood. At this point, the filters applied after the
i.subpixel module and the i.dod module will be presented
(Figure 7).

2.5. Comparison methodologies

To compare the methodologies in a more adequate
way, the confusion matrices method between the
supervised methodologies for the MODIS images versus
the supervised classification executed for the Landsat
images will be executed. Likewise, the sub-pixel
methodology is compared with the supervised
classification for Landsat images, in addition to this the
error or deviation in the classifications with the reference
methodologies is calculated with the Kappa index.

The evaluation criterion or variable was the number
of sub-pixels or pixels of each map, identifying which
class these belonged to, in order to obtain the number
of pixels for each class and its corresponding area, the
r.stats module was used, which facilitates this information.

The resulting maps are the main objective of this work,
since the similarity and concordance of the sub-pixel
classification ofa MODIS image of 500 meters of spatial
resolution is contrasted and appreciated, with the
classification of an image with 30 meters and the notable

Figure 6. a — classification module map i.subpixel; b — i.dod map classification
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difference of a common supervised classification of an
image of moderate spatial resolution with a high-
resolution image.

Each map will be accompanied by the confusion
matrix, which shows the quantification of the variation
and the success of the supervised classification with
MODIS and the sub-pixel classification with respect to
the classification made to the Landsat image. In Figure §,

the comparison between the supervised classification for
MODIS and Landsat will be shown.

On the map it is possible to appreciate the great water
coverage that the MODIS image due to its limitations
of spatial resolution fails to classify, especially the
definition of the limits of the marsh and the Magdalena
River, which is the body of water that generated this
marsh, this variation is exposed in the following table.

Figure 7. a — map i.subpixel; b — map i.subpixel with r.neighbors 3x3; ¢ — map i.dod; d — map i.dod with r.neighbors 9x9
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Figure 8. Validation of supervised classification for MODIS images based on supervised classification for Landsat:
1 — cyan: water properly mapped; 2 — blue: areas missing map; 3 — red: soil mapping as water; 4 — yellow: soil and vegetation correctly mapped

Table 1

Confusion matrix for supervised classification in MODIS
versus supervised classification Landsat

Number of pixels Percentage
Water Dry Water Dry
Water 90922 6378
Dry 108 496 1174 331

Asiit is possible to appreciate in the confusion matrix,
the total 8 percent of the image stopped being classified
as body of water by the MODIS images being this body
percentage of water in the Landsat images, belonging to
the river water bodies and the limits of the swamp, this
deviation between the two classification is also
quantifiable with the Kappa index that gave a value of
k=0.57 (95% confidence interval = = 0.0023), which
indicates in a statistical way that the data are moderately
similar to each other.

It is noteworthy to say that the use of this classification
is not suitable for the delimitation of bodies of water on
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this scale due to its poor accuracy evidenced in relation
to the capacity of a Landsat image.

Now we will compare the sub-pixel classification of
the MODIS image against the supervised classification
of a Landsat image. In Figure 9, there will be this

comparison.
Table 2
Confusion matrix for sub-pixel classification in MODIS
versus supervised classification in Landsat

Number of pixels Percentage
Water Dry Water Dry
Water 172 332 26 158
Dry 60 631 1102114

Visibly on the map it is possible to appreciate that the
sub-pixel classification covers mostly the body of water
classified by the MODIS image, in addition to the body
of water in its initial part, however it classifies dry zones
as wet, being able to solve this with the validation of an
image of better resolution, because the considerable
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Figure 9. Validation of sub-pixel classification for MODIS images based on supervised classification for Landsat:
1 — cyan: water properly mapped; 2 — blue: areas missing from mapping; 3 — red: soil mapping as water;
4 — vyellow: soil and vegetation correctly mapped

error would be in the non-classification of bodies of
water, to quantify this validation will be exposed the
confusion matrix below.

Once having the results of the confusion matrix it is
remarkable to see that 13% of the total water mapped is
correct and is presented in the two methodologies, in
addition to the great decrease in the error with a single
missing of 4% and a single 2% of incorrectly mapped
soil, however the inclusion of the DTM is not enough
to capture the bodies of water in which the Magdalena
River divides, this problem coming from the initial
resolution of MODIS images which are unable to capture
these details, due to the scale of the image, if we consider
that the Kappa index is of a k = 0.76 (95% confidence
interval = £0.0015) statistically checking the similarity
between the two classifications, showing that the
classification sub-pixel is effective and very attached to
the results that can be obtained with the use of satellite
images of high spatial resolution.

EARTH SCIENCE

Conclusions

At the end of all the results it was verified that the
classification of sub-pixels, which in this case involves
the linear mix model (LMM), the spatial coherence
analysis (SCA) of the i.subpixel module and the use of
drainage networks and accumulation maps of the digital
terrain module i.dod is truthful and similar to classifying
information of high spatial resolution in a common way.

The inclusion of DTM information as the topographic
attributes of this and derived information such as
drainage networks and accumulation maps validate from
other sides the classification made for the sub-pixels,
considering their behavior, which is directly linked to
the characteristics of the land, emulating its behavior
thanks to the zones of accumulation and projecting the
possible presence of water joining the previous
characteristics and drainage networks.
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It was possible to perform the delimitation and
classification of coverage of the “Cienaga de Zapatosa”
using images of moderate spatial resolution through the
use of the sub-pixel classification demonstrating
improvements with respect to the common supervised
classification method.

Since the use of images of moderate spatial resolution
was the maximum of this work and was carried out
successfully, it is possible to use positively the good
temporal resolution that this type of information brings,
making it possible to monitor the high dynamism of
bodies of water.

The quality of the results of these classifications,
whether these are the common ones or those proposed
in this work, depend directly on the quality of the input
data and on the concordance that these have with what
it represents physically, for which it is necessary have a
filter that evaluated the quality of these, before executing
any type of classification.

The ability to obtain coverage information at the sub-
pixel level of classified images makes this classification
method a “soft” or more refined classification technique.

Since the access to the type of information used in
this type of classifications, from the thickest to the most
refined, is free, being this online route available to the
entire population makes this technique an effective and
highly economic tool for the development of research
and inclusion in the projects and activities of developing
countries.

Due to the great advantages it brings, both
economically and operationally this technique has a very
versatile and wide field of action with uses that can range
from the construction of hazard or risk maps for bodies
of water, monitoring of extensive bodies of water,
delimitation of bodies of water, the use of different
indices that allow focusing on different objectives, a
number of uses that are based on the needs and that will
contribute to research and data collection for scientific,
economic and social uses.
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