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The use of fuzzy conceptual graphs for representing knowledge in process-oriented organi-
zations is considered. Two types of knowledge, procedural and declarative, are discussed; the
difference between them is shown along with representation and usage details in knowledge
bases. A formal definition of fuzzy conceptual graphs is given, and their ability to represent
declarative and procedural domain knowledge in a simple and understandable way is shown.
The structure of the knowledge base includes three levels: an ontological layer, which con-
tains concepts and integrates declarative and procedural knowledge; a middle or interface
layer, which describes business processes based on real data; and the ground layer, the layer
of real (historical) data, which collects primary information about the current state of ob-
jects and the relationships between them. The difference between the types of information
on each of the layers of the knowledge base is shown, as well as the application method of
fuzzy conceptual graphs on the interface layer. A description of the mechanisms of inter-
action and rules for reflecting data from the ground layer to the interface layer is provided.
Mathematical methods for analysis of primary data and fuzzy knowledge indicators are de-
scribed, which aid in decision-making, optimization and refinement of procedural knowledge
systems.
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1. Introduction

The span of Business Intelligence (BI) tools and similar approaches is due to grow
steadily in the next years, following the current expansion of information in organiza-
tions. Many companies already consider BI as a necessity, more than a competitive
advantage. Consequently, specializations or branches of BI technologies have been
emerging during the last years. One of them is Business Process Intelligence (BPI), or
the application of BI techniques to business processes [1]. BPI relates to the emerg-
ing data inside of a company; namely, the information concerning processes and the
resources associated to them. However, BPI is prone to encounter issues that, most
likely, have been dragged through the lifecycle of the company. Some of these problems
are related to technological limitations, like absence of event logging, while others are
related to Knowledge Representation (KR), like incompatibilities in the ontological
knowledge among business units or lack of standardized process documentation.

Conceptual Graphs (CGs) are an intuitive and easily understandable means to rep-
resent knowledge [2, p. v], and they can be combined with Fuzzy Logic (FL) to create
Fuzzy Conceptual Graphs (FCG), which are focused on the approximate representa-
tion of imprecise knowledge [3, p. 1]. The aim of this work is to present FCGs as a
suitable formalism for KR and reasoning in process-oriented organizations. For this
purpose, a Knowledge Base (KB) structure is proposed based on the FCG formalism.
Mapping between declarative and procedural knowledge is discussed, and an interface
between ontological and factual knowledge is presented. Fuzzy approaches to quan-
tify the characteristics of the KB are proposed, including a pseudometric based on the
flow of information through entities.
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2. Background

Knowledge representation can be thought of as an internal representation of reality
inside an intelligent agent. It consists of symbols that represent a limited collection
of propositions about the world, and as such, is only able to approximate reality.
Choosing a specific type of KR will determine how and what to perceive from reality.

Ontologies are abstract models consisting of concepts that are relevant for describ-
ing the real world [4, p. 30]. They provide a set of terms used to represent reality,
and for this reason, they are considered the heart of every knowledge representation.
They are typically built on top of a taxonomy, which is a hierarchical structure of con-
cepts using the relation ”is a kind of” among them. However, they vary according to
which kind of knowledge they hold. Two types of knowledge can be distinguished [5].
Declarative knowledge describes facts or the understanding that something is true.
Procedural knowledge, on the other hand, refers to the ability to perform a task in an
efficient way [4, p. 48].

To establish a basis for reasoning, ontologies must be embedded into a suitable
framework, which includes a formal system of logic and an efficient computational
environment. Conceptual graphs are a logically precise formalism which can represent
knowledge in a humanly readable, and computationally manageable form [6]. Fuzzy
logic is an extension of traditional logical systems, which offers the framework for
dealing with uncertainty and imprecision. In contrast to exact KR, FL is a much
more similar way to represent the human mind [7].

A CG is composed of concept nodes representing entities and relation nodes repre-
senting relationships between these entities. A concept node refers to a specific entity
by adding an individual marker to its label. Otherwise, the concept node refers to an
unspecified entity. In fuzzy logic, an object is said to be of a type with an uncertainty
and/or truth degree. The main difference between CGs and FCGs is only that CGs
are based on basic concept types and basic relation types, whereas FCGs are based
on fuzzy concept types and fuzzy relation types [3, p. 36].

A basic CG [2, p. 26] is composed of a vocabulary 𝑉 = (𝑇𝐶, 𝑇𝑅, 𝐼) and a 4-tuple
𝐺 = (𝐶,𝑅,𝐸, 𝑙) where:

– 𝑇𝐶 is the set of concept types.
– 𝑇𝑅 is the set of relation symbols, which is partitioned into subsets 𝑇1𝑅, . . . , 𝑇𝑘𝑅

of relation symbols of arity 1, . . . , 𝑘, respectively.
– 𝐼 is the set of individual markers, * denotes the generic marker and 𝑀 = 𝐼 ∪ {*}

is the set of markers.
– (𝐶,𝑅,𝐸) is a finite, undirected and bipartite multigraph denoted 𝑔𝑟𝑎𝑝ℎ(𝐺).
– 𝐶 is the concept node set.
– 𝑅 is the relation node set.
– 𝐸 is the family of edges.
– 𝑙 is a labeling function that satisfies:

– A concept node 𝑐 is labeled by a pair (𝑡𝑦𝑝𝑒(𝑐),𝑚𝑎𝑟𝑘𝑒𝑟(𝑐)), where 𝑡𝑦𝑝𝑒(𝑐) ∈
𝑇𝐶 and 𝑚𝑎𝑟𝑘𝑒𝑟(𝑐) ∈ 𝐼 ∪ {*}.

– A relation node 𝑟 is labeled by 𝑙(𝑟) or 𝑡𝑦𝑝𝑒(𝑟) ∈ 𝑇𝑅.
– Edges incident to a relation node 𝑟 are totally ordered and labeled from 1

to 𝑎𝑟𝑖𝑡𝑦(𝑡𝑦𝑝𝑒(𝑟)). An edge labeled 𝑖 between a relation 𝑟 and a concept 𝑐
is denoted (𝑟, 𝑖, 𝑐).

Computer systems that make use of human knowledge are referred to as knowledge-
based systems (KBS). A typical KBS consists at least of a knowledge base contain-
ing organized knowledge represented by KR formalisms, and a reasoning engine with
mechanisms to imitate the problem solving process of a human expert [4, p. 54]. Or-
ganized knowledge in a KB refers to ontologies, facts, rules and constraints [2, p. 2].
Factual knowledge makes assertions about a concrete situation.

The simplest KR model consists of a KB with ontologies and facts [2, p. 312]. When
working with complex systems, however, other kinds of components have to be added
to the model in order to correctly describe the state of the world and its evolution in
time. Inference rules represent implicit or general knowledge about a domain, which
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helps to fully describe a world. Evolution rules transform factual knowledge: they
represent possible actions leading from one world to another.

3. A KB using the FCG formalism

The following is an approach to structuring declarative and procedural knowledge
in a KB using the FCG formalism. On this proposal, ontological and factual knowledge
are bound together by CGs structured in layers. There is a middle layer (interface)
between the ontological and factual (ground) layers. Rules and constraints are context-
dependent, and they are assumed to be developed aside from the ontological structure.

3.1. Ontological layer

Consider an enterprise 𝑋𝑌 𝑍 divided in different departments or business units.
These units are organized in a hierarchical or non-hierarchical way, or a combination
of both, with varying levels of interdependence. This interdependence between depart-
ments can be expressed in several ways, depending on the task at hand: for example,
interdependence measures could be the number of shared resources between business
units, or the distributed weight of the different channels of communication between
departments (See Figure 1).

Figure 1. Interdependent process

Basically, physical or abstract entities, together with the relations between them,
are commonly shared (up to a certain degree) among the units of a company. However,
these dependencies are often ignored or hidden for several reasons, which contributes
to problems in corporate visibility. In companies with large operations, for example,
multiple users share and manipulate information or assets, even if they do not know
about each other’s actions. This can give rise to inconsistencies or issues, which
require prompt and efficient solutions in order to resume normal operation. In the
ideal scenario of a company with full documentation of its ontologies and visibility of
its processes, finding solutions to this kind of problems is straightforward. In a real
scenario, on the contrary, there can be flaws and inconsistencies in the form or content
of the knowledge representation, which could prevent or limit problem solving.

Consider the same company 𝑋𝑌 𝑍, with a number 𝑛 of different business units.
Each one of these departments possesses a set of ontologies of type 𝑜 in the form of
CGs, where type 𝑜 could be either declarative or procedural. The set of 𝑛 departments
is part of a CG representing the hierarchical structure of the company, with the top of
the hierarchy being the company itself. If at least one of the business units possesses
an ontology and, more specifically, its set of vertices (concepts) is not empty, then the
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maximal join [2, p. 218], [8] of the ontologies of each unit, together with the taxonomy,
results in an upper or top-level ontology, denoted by 𝑇 , which is itself a CG.

Notice that process analysis relies on the existence of documented business pro-
cesses or their generation from event logs. In the proposed KB, existing business
processes have to be embedded into the ontological layer as ontologies of the proce-
dural type, maintaining the overall CG structure. Naturally, newly discovered busi-
ness processes should update the ontological knowledge. Several approaches exist to
merge declarative and procedural knowledge. For example, the Static and Dynamic
Knowledge Representation Framework (SD-KRF) [9] expresses processes, nodes, tasks,
events, transitions, actions and decisions as ontology classes. A method for creating
ontological knowledge is based on providing compatibility to a set of tools for modeling
processes and corporate infrastructure [10].

3.2. Interface layer

Factual knowledge asserts that some entities exist and that they are related by
some relationships [2, p. 22]. It is obtained after transforming raw historical (or real-
time) data into useful information for analysis and decision-making. In this KB, a
way of expressing factual knowledge is proposed. It consists in merging the obtained
information from historical data into the upper ontology T, creating a new layer on
the CG structure. The newly created layer, which is denoted interface layer, is the
boundary between ontologies and historical data and serves as the ground on which
business processes take place.

Three general rules are proposed for the generation of this interface. First, relations
on the interface layer cannot exist between any arbitrary kind of concepts or relations,
but only between instances of concepts or relations. It is important to understand the
difference between an instance (instantiated type) and a grounded instance [11, p. 92].
An instance refers to a more precise rendering of a certain concept or relation by means
of a specific configuration of its attributes, with the exception of those that express
quantification or multiplicity (quantifiers) and grounding (determiners). An instance is
an unspecified entity in a CG. However, instances cannot come into existence without
first being grounded. An example of an instance would be a concept with a special
configuration of its aspect attributes (e.g. size, color, shape). A grounded instance
would be the same instance with added attributes of unique identification, quantity
and a specific position in space and time. It corresponds to a specific entity in a CG
with an individual marker.

The second property constrains the representations on the interface layer to pro-
cedures or processes. Specifically, relations between concept instances are expected to
represent activities or events of a process execution. This property can be considered
as a qualitative projection of the observed world into an ontology, because it deter-
mines which concept instances interrelate and how. Thereby, the interface layer is the
ground on which most process analyses take place.

The third proposed rule states that the relations between instances on the interface
layer should be weighted, which means that some relations will be stronger than others
with magnitudes that range over an interval (i.e. from 0 to 1), representing a chosen
value (e.g. cost, benefit, implication or causation). Notice that this property enforces
a transformation of the layer from a normal CG into a FCG. This property can be
considered as a quantitative projection of the observed world into an ontology, because
it assigns magnitudes to the qualitative relations defined on the second property.
Hence, a structure for the interface layer is proposed as follows.

Consider a basic CG 𝐺 defined over a vocabulary 𝑉 , where 𝑔𝑟𝑎𝑝ℎ(𝐺) is constrained
to be an undirected bipartite graph and the set of individuals 𝐼 = ∅; then every
node in 𝐺 corresponds to an instance that is not grounded. Furthermore, the set 𝑅
can be generalized to contain other kinds of nodes, e.g. actors, 𝑑𝑒𝑚𝑜𝑛𝑠, constraint
overlays [12], in order to enable procedural expression on the CG. A restriction is set
so that all relations are binary (n-ary relations can be transformed polynomially into
binary ones [2, p. 360]). Edges labeled 1 correspond to arcs exiting a node heading
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to a relation, and edges labeled 2 are directed the opposite way [2, p. 114]. Thus, 𝐺
corresponds to the interface layer.

Let 𝑐 be a concept node and 𝑟 a relation node on the interface layer, 𝑖 ∈ {1, 2} and
𝐸𝑐 = {(𝑟*, 𝑖*, 𝑐*) ∈ 𝐸|𝑐* = 𝑐} the set of edges adjacent to the node 𝑐. The number of
edges incident to 𝑐 that are labeled 𝑖 is expressed as follows:

𝑞(𝑐) =
∑︁
𝑏∈𝐸𝑐

𝑛𝑏 * 𝑢(𝑏),

where 𝑛𝑏 is the number of occurrences of the grounded edge 𝑏. The function 𝑢 is then
defined as follows:

𝑢(𝑛) =

{︃
1 if 𝑙(𝑏) = 𝑖,

0 if 𝑙(𝑏) ̸= 𝑖,

where 𝑙 is the labeling function. A function 𝑝(𝑐, 𝑏) denoting the probability of entering
or exiting node 𝑐 through edge 𝑏 is defined as follows:

𝑝(𝑐, 𝑏) =
𝑛𝑏
𝑞(𝑐)

.

Thus, the probability of exiting or entering node 𝑐 is expressed as follows:

𝑃 =
∑︁
𝑏∈𝐸𝑐

𝑝(𝑐, 𝑏) * 𝑢(𝑏),

which evaluates to 0 or 1 depending on the existence of exiting or entering edges.
When 𝑖 = 1, the function 𝑝 is denoted as the node routing through 𝑏. Updating the
function with 𝑖 = 2 provides the probability of entering the node 𝑐 from 𝑏, which is
denoted as the node inflow from 𝑏. In presence of n-ary relations, the same can be
extended to a relation node 𝑐 by applying 𝑝 with 𝑖 = 1 to obtain the inflow and 𝑖 = 2
for the routing.

In the interface layer, however, relations are constrained to be binary. This means
that both edges incident to a relation will have the same value of 𝑝. Thereby, the
function 𝑝(𝑐, 𝑏), where 𝑏 is incident to a relation 𝑟, will be denoted as the fuzzy mem-
bership of 𝑟 on the interface layer. Thus, the underlying CG is transformed to a FCG,
which can be visualized by a directed graph on which relations are represented by
fuzzy edges (See Figure 2).

Figure 2. Layers on the KB
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A quantification of the relation of a node to the entire layer is also proposed.
Consider the function 𝑓(𝑐):

𝑓(𝑐) =
𝑞(𝑐)

2
∑︀

𝑟∈𝑅 𝑛𝑟
,

where 𝑛𝑟 is the cardinality of the set of grounded instances of the relation 𝑟. When
𝑖 = 1, 𝑓 represents the exit factor or 𝑒𝑥𝑡(𝑐), which is the weight of the exiting grounded
edges from 𝑐 in relation to the totality of grounded relations. When 𝑖 = 2, the
entering edges to 𝑐 are considered, and this is denoted as the entrance factor or 𝑒𝑛𝑡(𝑐).
From both exit and entrance factors a correspondent pseudometric can be obtained.
Consider the following expression:

𝑑(𝑥, 𝑦) = |𝑓(𝑦)− 𝑓(𝑥)|,

where 𝑥, 𝑦 are concept nodes. This corresponds to a percentage of the totality of
grounded relations. When 𝑖 = 1, function 𝑑 is denoted as exit distance or 𝑑𝑒𝑥𝑡. When
𝑖 = 2, the correspondent entrance distance or 𝑑𝑒𝑛𝑡 is obtained. Consider the following
relation:

ℎ(𝑐) =
𝑒𝑥𝑡(𝑐)

𝑒𝑥𝑡(𝑐) + 𝑒𝑛𝑡(𝑐)
.

The function ℎ corresponds to the flow factor. If ℎ(𝑐) > 1/2, 𝑐 is considered a
source, with a degree of truth or fuzzy membership of ℎ(𝑐). It is considered a sink
if ℎ(𝑐) < 1/2, with a degree of truth of 1 − ℎ(𝑐). The flow factor can be assigned to
nodes as the fuzzy membership value, depending on the task.

3.3. Ground layer

The proposed ground layer is composed of grounded instances of concepts and
relations between them. This layer contains the historical (or real-time) data formatted
as CG structures. However, this layer is unconstrained in relation to any ontology.
In other words, grounded instances, which have been verified not to belong to any
ontology, can be preserved on the layer. This is a crucial requirement of any process-
oriented system, because it allows process discovery by means of process mining [13,
p. 10].

4. Support for process analysis in the KB

4.1. Multiple contexts

Possible interdependence between work units and their ontologies or business pro-
cesses is not the only source of complexity for analysis: the kind of analysis that is
needed can be different every time, depending on a variety of factors. For example,
analysis approaches can be generalized for the whole company while considering only
a specific kind of resource, or they can be specific for a defined process while consid-
ering all the interrelations with adjacent processes. A multiplicity of scenarios can be
brought to mind in which a static kind of knowledge is not suitable for the analysis
of the task at hand. Therefore, it is necessary to consider the context of the analy-
sis that will take place, so that the appropriate instantiations can be performed (See
Figure 3).

A new instantiation of the interface layer can be obtained by defining a subset
of all the concepts or relations that satisfy a certain condition (a filtering operation)
and generating the interface layer in the ordinary way over the resulting node subset.
New instantiations of the layer can also be obtained by extracting all the grounded
instances that satisfy a certain condition, and thus obtaining fuzzy values for the
interface nodes by means of performing a certain operation over the resulting grounded
subsets. Combinations of these approaches can also be suitable for complex analyses.
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Figure 3. Interface instantiations

4.2. Process analysis

Graph search over the interface layer provides an interesting array of possibili-
ties for process analysis. Business metrics can be reflected on concept instances on
the layer, making it possible to visualize the correlations between them. Abnormal
behavior of a metric can be determined by critical factor analysis (CFA) over the
layer [1]. A straightforward approach to CFA is to translate a subgraph of the inter-
face layer into a decision tree, in which degrees of membership and fuzzy relations of
the graph can represent uncertainty. This creates a visual representation of every out-
come from a starting node. If a visual approach is complicated to obtain, a path to a
certain goal state (metric) from an initial state on the interface layer can be created
by means of graph search techniques. A search can further be delimited by applying
a set of constraints over the interface layer, e.g. preventing it to enter certain nodes
where a condition is valid. The probability of ending in the goal state is obtained
by the product of the fuzzy values of the edges of the path, assuming that they are
normalized.

If only a specific business metric needs to be analyzed, an approach is to com-
pare the relevant nodes with the proposed exit and entrance distances, as a measure
for impact or priority. Furthermore, if the extracted process data comprises informa-
tion about allocation of resources, it is possible to perform capacity planning. Groups
of instances can be considered as separate entities subsumed under a common con-
cept. By adding to the layer groups of instances, together with the correspondent
constraints, a normal search can provide appropriate resource allocations to achieve
the desired performance. The proposed flow factor can provide insight about existing
bottlenecks and expose possible focus points for improvement or optimization.

5. Conclusion

The present work proposes the use of Conceptual Graphs with Fuzzy Logic for
representing knowledge in process-oriented environments. Conceptual Graphs were
discussed as a suitable and straightforward approach for representing and unifying
knowledge. For this reason, a Knowledge Base structure based on Fuzzy Conceptual
Graphs was proposed, with a high-level of abstraction. The KB features three layers:
an ontological layer, merging declarative and procedural knowledge; a middle or in-
terface layer, where real business processes are projected from historical or real-time
data; a ground layer, where concrete instances and relations among them are stored
for retrieval. The following coefficients are proposed to support process analysis on
the interface layer: entrance factor, exit factor, entrance distance, exit distance, flow
factor. Possible methods to analyze processes over the KB are exposed to provide
evidence for the suitability of the proposed KB for process-oriented organizations.
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УДК 004.82:519.17
Нечеткие концептуальные графы для представления
знаний в процессно-ориентированной организации

Э. Х. Азофейфа, Г. М. Новикова
Кафедра информационных технологий

Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, Россия, 117198

Рассматривается использование нечетких концептуальных графов для представления
знаний в процессно-ориентированных организациях. Рассмотрены два типа знаний —
процедурные и декларативные, показано их различие и особенности представления и ис-
пользования в базах знаний. Дано формальное определение нечетких концептуальных
графов. Показаны их возможности для представления в простой и понятной форме как
декларативных, так и процедурных знаний предметной области. Предложена структу-
ра Базы Знаний, которая включает три уровня: онтологический слой, содержащий кон-
цепты понятий и интегрирующий декларативные и процедурные знания; средний слой,
описывающий схемы бизнес-процессов на основе исторических данных, формирующих-
ся на базовом уровне; нижний слой, слой реальных данных, где собирается первичная
информация о текущих состояниях объектов и отношений между ними. Показано отли-
чие типов информации на каждом из слоев базы знаний, а также способ использования
нечеткого концептуального графа на средне-интерфейсном слое. Рассмотрены механиз-
мы взаимодействия и правила преобразования информации между средне-интерфейс-
ным слоем и базовым слоем. Описан математический аппарат и методы анализа пер-
вичной информации для поддержки принятия решений по оптимизации и уточнению
процедурных знаний системы, а также показатели, используемые в процессе анализа
нечетких знаний.

Ключевые слова: нечёткие концептуальные графы, представления знаний, бизнес-
процесс, базы знаний, онтологии, интеллектуальный агент.
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