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The structural form of the Kuryshkin-Wodkiewicz model of quantum measurement was devel-
oped in detail for quantum Kepler problem. For more complex objects such quantum structure
is unknown. At the same time, a standard (non-structural) model of quantum measurement
proposed by Holevo-Helstrom is suitable for any quantum object. The aim of this work is to
spread the structural model of quantum measurement to a broader class of quantum objects
— a model of quantum measurements of optical spectra of atoms and ions with one valence
electron.

In this work the Kuryshkin-Wodkiewicz model with implementation of Weyl-Kuryshkin quan-
tization rule is applied to the extended quantum Kepler problem of quantum systems with one
valence electron, such as alkali metal atoms. The proof of the consistency of the model is based
on two Kato theorems about compact perturbations of operators. In the proof process the
explicit form of the discrete spectrum of the valence electron for various spectral series was
achieved with dependence on the serial parameters of the disturbance spectrum of an isolated
object in the process of quantum measurement.

Key words and phrases: quantum measurement models, quantization rule, a relatively
compact perturbation of the observable operator, perturbation of the observable discrete spec-
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1. Introduction

The energy spectrum F, = f% of the valence electron in a hydrogen atom is
described by a discrete spectrum of the Hamiltonian operator H = —%—% of the quantum
Kepler problem with the Hamiltonian function H (¢q,p) = % — % The measured

spectrum of the valence electron, except from the operator, is also dependent on the
quantum state p of the probe of the measuring instrument, i.e. It is described by a
discrete spectrum of the measured observable O, (H) = Ow (H * W,.) [1,2].

The constructive form of the Kuryshkin-Wodkiewicz model of quantum measurement
is developed in detail for quantum Kepler problem [3] and quantum oscillator [4, 5].
For more complex objects such quantum construction is unknown. At the same time,
a standard (non-constructive) model of quantum measurements of Holevo-Helstrom is
suitable for any quantum object, any quantum system [6,7].

The aim of this work is to spread the constructive model (of quantum measurements)
of Kuryshkin-Wodkiewicz to a wider class of quantum objects, to construct a model of
quantum measurements of optical spectra of atoms and ions with one valence electron.
Hydrogen-like atoms - a hydrogen atom, muonic atoms, ions of different charges with a
single electron. We are interested in the atoms of the alkali metals, consisting of a core
(a nucleus together with all the filled electron shells) and the valence electron and ions
with one valence electron.

2. Hydrogen-Like Atoms

Theory of the hydrogen atom in quantum mechanics is a theory of an electron in a
hydrogen atom. Its energy spectrum under theoretical analysis where electron is treated
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as an isolated quantum object has a very simple form

En = - (1)

2n2

The measurement process violates the isolated state of the quantum object, transfer-
ring it to an open state, forming a part of a complex system: “object+probe” [8-11].

The measured energy spectrum of an electron in a hydrogen atom is perturbed with
respect to the spectrum (1):

There is a description problem (of constructing a mathematical model) of the mea-
sured values of the optical spectrum of the hydrogen atom. This model is a Weyl-
Kuryshkin quantization rule equipped with: a mixed quantum state {¢y} of the probe,
smoothed (perturbed) classic observed A * Wy, 1 (¢,p), applied to it the Weil quantiza-
tion rule O,y (A) = Ow (A). Next step will be a theoretical study of the spectrum of
this operator and the numerical calculation of parts of the discrete spectrum affiliated
with {¢x} [12-15].

First remark. While the experimental data is obtained with respect to a valence
electron spin, the model not considers the spin state. As a result, at the current stage
the studied model can not fully describe quantum interaction. However, on the one
hand, it is adequate for the averaged over spin experimental values, on the other hand
a model can be generalized taking into account the electron spin by Stratonovich-Weyl
quantization [16-18].

For the hydrogen atom model is verified with relative accuracy ~ 10716 (there is no
special achievement in it). Before discussing the dependence of the perturbations 0 E,, of
the hydrogen atom under the influence of the measuring device with a quantum probe
in the state {¢r} let us recall what is known about the discrete energy spectrum of the
valence electron in an isolated atom of an alkali metal with a serial number Z.

3. The Energy Spectrum of the Valence Electrons in the Atoms
of the Alkali Metals

For atoms with more than one electron, even for the most simple, Schrodinger equa-
tion can not be solved immediately neither with analytical nor numerical methods. For
this reason, the study of the spectra of many-electron atoms is based on an approximate
model. The most appropriate approach turned out to be the one [19] that maintains an
idea of the individual state of the electron in an atom, and the whole state of the atom
is determined by a set of states of the electrons with respect to their interaction. This
approach helps us obtain some general information about the system’s possible energy
levels for a given atom and their mutual arrangement.

General description of states of electrons in the atom is based on the assumption that
each electron moves in an effective centrally symmetric field produced by the nucleus
and all the other electrons. More detailed analysis focuses on the non-central part of
the electrostatic and magnetic interaction of electrons. In the theory of atomic spectra
these interactions are usually described as small corrections to the centrally symmetric
field using methods of perturbation theory. Perturbation does not change the number
of possible states of the system [19]. The calculation of the energy parameters can find
practical use in various aspects of the atomic spectra theory. The key value of this
calculations is determination of the wave functions. They are used in the calculation of
the probabilities of radiative transitions, the effective excitation cross-sections and other
characteristics of the atom. This is the main problem of the calculation of many-electron
atoms, as energy levels can be obtained (and with high accuracy) from experiments.
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In the approximation of a complete separation of the electronic variable the probabil-
ity of radiative transitions k — k' between states xk and x’ can be expressed [19] through
one-electron radial integrals

Ryw = /P,.i (r)rPq (r)dr. (3)

Therefore, the main task in the calculation of the transition probabilities is to find
radial functions Py (r), P. (r). For all of the atoms and ions, with the exception of
those with a single electron, radial functions can be found only by approximate methods.
Main methods of approximate calculation of the radial functions are different versions
of variational methods and semi-empirical methods. All semi-empirical methods use of
experimental values of energy levels.

Variational methods provide good approximation quality of functions P, (r) in the
area of values r, which is the most significant in the calculation of energy. For large
values of r these functions can be very inaccurate. With the help of semi-empirical
methods it is easier to get functions P (), exact at large r, i.e. just in the region which
is most important for the calculation of transition probabilities. Therefore, much more
simple semi-empirical method gives a better agreement with experiment (the accuracy of
calculation of the transition probabilities) than the method of self-consistent field [19].

In the method of self-consistent field wave functions are calculated simultaneously
with eigenvalues of the system of differential equations, with energy parameters Fi.
Different approach is more preferable for calculating the radiation transition probabilities.
We can pre-define values E,, and lookup such single-electron radial functions P, (r) that
calculated values E coincided with pre-defined. In this case the problem of self-consistent
defined by the system of equations field is usually replaced by a single equation for the
optical electron in an effective field. This equation has the form

1 d? Z l(l+1) i
{rdr?‘r*w*V”(”‘E”}P’““)‘O‘ W

The energy parameter E, is equal to the difference between the atom energy F, and
the “frozen” atomic core energy E; [19]. Accuracy of functions P, (r) largely depends
on how close the selected value F, is to the true value of the difference F, — E;. In the
semi-empirical method, the energy parameter F, is equal to the experimental value of the
ionization potential I,;. Even for the alkaline earth atoms, and even more so for the alkali,
it is the most appropriate to apply the semi-empirical method of calculations [19]. When
choosing an effective potential Vj; (r) different approaches are available. However, in all
cases, functions P, () have good asymptotic because the behavior of these functions for
large r is determined by pre-selection of E.

One of approaches is to choose potential V,; (1) as a function of some fitted parameter
whose value satisfies both boundary conditions. (In general case, the selected value E,
does not belong to eigenvalue of the equation (4), an thus it does not necessary have to
satisfy both of the boundary conditions: P, (0) =0, P, (r) — 0).

4. Generalization of Kuryshkin-Wodkiewicz Model on the
Valence Electrons of Alkali Metal Atoms

The spectral composition of terms (excluding spin interaction, relativistic corrections,
etc.) of an isolated hydrogen atom can be easily calculated:

()
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Upon splitting of the terms, they acquire corrections d F,; so that

R
Eyn=———+0E,. 6
1 o2 + 1 (6)

In the measurement process (due to “interaction” with the quantum probe) the mea-
sured energy spectrum (after the projection on the original Hilbert space) becomes

ul +d6E,; + 0FE,, (7)

E?’Ll,KJ = - 2n2

where & is the multi-index of the quantum probe state. This is a standard approach for
the hydrogen atom.

The spectral composition of terms of “hydrogen-like” alkali metals atoms is defined
by the equation

R
Ef = 8
: 2(n+alz)2 ( )

Upon splitting of the terms, they acquire corrections

nl,mmg 7\ 2 , s
2(n+o07)

In the process of measuring the ”"measured” energy spectrum takes the form

R
EZ = + 6Eumm, + 0E,. (10)

nl,mms,k 2(7’L—|—0’lz)

There is no need to take into account the additional contributions of fine structure
and hyperfine structure in the formula (6) and (9) of the measured values of observables —
energy before generalization of the Weil-Kuryshkin quantization rules to the quantization
rule of Kuryshkin-Stratonovich. Consequently, the measured values of the terms should
be limited by the formulas

R
1

=——— +40E! 11
n,k 2n2 + K ( )
and R
= —————— +0E. (12)
' 2(n+0lZ)

Moreover, contributions §E! and §EZ are obtained from the convolution V (r) *
Wiswy (¢, p), where

Vi) = (13)
and p
VZ (r) = —%+%. (14)

As a result the quantization rule of Weil-Kuryshkin is adequate for the alkali metals
to the same extent as the potential Vi, (r, 1), with respect to the small corrections to the
centrally symmetric field of core.
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5. The Model of Quantum Measurements of
Kuryshkin-Wodkiewicz for Atoms and Ions of Alkali Metals

Recall the form
- 1
0,(H)=H+ zj:aj <2b] +V; (T,cosﬂ))
of the Hamiltonian of hydrogen atom perturbed by the probe measurement in a quantum
state
p=">>_a;l; (b)) (v (b)]-
J

Therefore, perturbation of the potential V! (r) measured by probe in the state p has
a form 6V, =) a;V; (bj, r,cos¥) that is
J

0, (—i) = Ow <(—i> * W, (F,ﬁ)) = —% + 6V, (7).

Ritz method makes it possible with the help of 6V, () to calculate ¢,E, for the

first spectral lines §,AY = (A2 — )\}g)N through the calculations of eigenvalues of the
Ritz matrix of dimension N. In the works [20-23] it is shown how to restore the
state p by disturbances 0,E,. Thus, on the perturbation 6V, (i) one can calculate

p=>_a;¥; (b;)) (¥ (bj)] such that

As a result, we get

Theorem 1. For any mized state p = > a;|v; (b)) (¢ (b;)| of a quantum probe

J

there exists a unique perturbation 8V, (¥) of potential V' (F) = —1 being V* (r)-compact

and equal to zero at infinity. And vice versa, to any V' (r)-compact and equal to zero

at infinity disturbance 6V, () of potential V' (r) corresponds the state p =" c¢; [1h;) (1]
J

N
uniquely defined in a subspace HY = { > cjwj} of minimal dimension N in the Hilbert

=1
space Lo (R?).

Let us use the result of Kato’s theorem [24]: If the operator O (H) = H + V (7) of
the potential V' can be written as the sum of two functions, one of which is continuous
and bounded, and the other is the square-integrable on R3, while V () r) 0, then

T o0
V is H-compact. Any perturbation V, (r,cos?) of the centrally symmetric field VZ (r)
in (14) in the problem (4) decreases at infinity, and thus according to Kato theorem
V7 4V, is H-compact, vanishing at infinity. According to the Statement 1 for V.2 (7) =
VZ (r) 4V, (r,cos¥) there is a state pZ = Y ¢; [1b;) (1;| defined uniquely in a subspace

N
HN = {Z cjy; ¢ of minimal dimension N in the Hilbert space Lo (]RB) such that

Jj=1
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(V1 ng) (7,p) = VZ(¥). Thus, for the measured Hamilton operator of a valence
electron in the alkali metal atom the measured potential is:

(VZ«W,) (70) = {(V' « W,z) « W, } (7.1) .

A —
Vi (™
Hence, is valid

Theorem 2. The quantization rule of Kuryshkin-Wodkiewicz applied to the valence
electron in the alkali metal atom with an approzimate pseudopotential V.2 () been mea-
sured by the quantum probe in the state p =Y c; [1;) (;| take the form of quantization
rule of Kuryshkin-Weyl with the potential (VZ « W,) ().

Corollary 1. Quantum measurement by the quantum probe in the state p of the
energy spectrum of the valence electron in the alkali metal atom with state values

R
EZ =— ~
2(n+o0f)
of (8), will result in measured value
R
T%lvp = 7 T 6EpZ
2 (n + o7 )

of (12).

6. Conclusion

In [2,3,25,26] of quantum measurements applied to the quantum problem of Kepler
has been implemented. In previous works a particular modification the model of quantum
measurement has been applied to the problem of quantum oscillator [4,5]. In this paper
the Kuryshkin-Wodkiewicz model with implementation of Weyl-Kuryshkin quantization
rule [3,25,26] is applied to the quantum systems with one valence electron like alkali metal
atoms Kuryshkin-Wodkiewicz model implementing quantization rule Weil-Kuryshkin,
extended to the quantum system with one valence electron, such as alkali metal atoms.
The proof of the consistency of the model is based on two Kato theorems [24]. The
explicit form of the discrete spectrum of the valence electron for various spectral series,
depending on the serial parameters of the disturbance spectrum of an isolated object in
the process of quantum measurement was achieved.
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Mogenp KBaHTOBBIX n3Mepenuit Kypoimkuna-ByakeBuda auis
aTOMOB M MOHOB C OJIHUM BaJIEHTHBIM 3JIEKTPOHOM

A. B. I'opbaues, A. B. 3opun, JI. A. CeBacTbsiHOB

Poccutickuti yrusepcumem opystcobvr Hapodos, Mockea, Poccus

KoucrpykruBnaast hpopma MOfe M KBaHTOBBIX n3Mepennit Kypoimknna-Byakesuda meraabHO
pa3paborana /i KBaHTOBOM 3amaun Kensepa. s 6ostee c10:KHBIX KBAHTOBLIX OOBHEKTOB TaKasd
KOHCTDYKIMsl HEM3BECTHA. B TO ke Bpemsi cranjapTHas (He KOHCTPYKTHUBHAS) MOJIETh KBAHTO-
BBIX U3MEpPEHUM X0JeBO—XeJICTPOMa TOAUTCS JJIsd JIIOOOTO KBAHTOBOrO 0ObekTa. Ilenbio manmoit
paboOTHI SIBJSIETCST pACIIPOCTPaHEHNe KOHCTPYKTUBHON MOJIEJIM KBAHTOBBIX U3MEpPEHU Ha OoJiee
MMUPOKUI KJIACC KBAHTOBBIX OOBEKTOB — MOJEJb KBAHTOBBIX U3MEPEHUI ONTUIECKOTO CIEKTPA
ATOMOB M MOHOB C OJTHAM BAJIEHTHBIM 3JIEKTPOHOM.

B pabore momens Kypwimkuna—ByakeBuda, peajusyromias MPaBUIO KBaHTOBaHUS Beilsi—
Kyprlikuaa B IpUIOXKEHUN K KBAHTOBOM 3aj1ade Kertepa, pacpocTpaneHa Ha KBAHTOBBIE CH-
CTEMBI C OJTHUM BAJIEHTHBIM 3JIEKTPOHOM, HAIIPUMED, Ha ATOMBI IEJIOYHBIX METAJIJIOB. B OCHOBY
JOKa3aTeJIbCTBA COCTOATENBHOCTH MOJIEIH TIOJIOXKEHBI JIBE TeopeMbl KaTo 0 KOMIaKTHBIX BO3MY-
IIEHUSIX OepaTopoB. B xo/ie JoKa3aTebCcTBa MOy YeHbI siBHBIE (DOPMYJIBI TUCKPETHOT'O CIIEKTPA
BAJIEHTHOT'O 3JIEKTPOHA ISl PA3JIMIHBIX CIEKTPAJIbHBIX CEPUI, 3aBUCSIINE OT CEPUAJLHBIX IMa-
paMeTpOB BO3MYINEHUsI CIIEKTPA M30JTUPOBAHHOIO OOBEKTA B MPOIECCE KBAHTOBBIX M3MEPEHUIA.

KurodueBrnle cjioBa: KBAaHTOBBIE MOJIE/IM U3MEPEHUS], IPABUJIA KBAHTOBAHUS, OTHOCUTEILHO
KOMIIAKTHOE BO3MYIIeHHE HAOJII0IaeMOr0 OIIEPaTOpa, BO3MYIIEHNE HADIIOAAEMOr0 JUCKPETHOTO
CIIEKTDA
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