РАЗРАБОТКА СОСТАВА И ТЕХНОЛОГИИ ТАБЛЕТОК АФОБАЗОЛА МЕТОДОМ ВЛАЖНОГО ГРАНУЛИРОВАНИЯ

С.А. Сизяков, Л.Н. Грушевская, М.Е. Коночкина, Б.М. Пятин

ГУ НИИ Фармакологии им. В.В. Закусова РАМН ул. Балтийская, 8, Москва, Россия, 125315

К.В. Алексеев

Кафедра общей фармацевтической и биомедицинской технологии Медицинский факультет Российский университет дружбы народов ул. Миклухо-Маклая, 8, Москва, Россия, 117198

В статье представлены исследования по разработке таблеток нового анксиолитического средства — 2[-2-(морфолино)-этил]-тио-5-этоксибензилимидазола дигидрохлорида — афобазола. Подобран и обоснован оптимальный состав вспомогательных веществ для производства таблеток афобазола методом влажного гранулирования.

Афобазол — новый селективный анксиолитик, не относящийся к классу агонистов бензодиазепиновых рецепторов, синтезированный в ГУ НИИ фармакологии им В.В. Закусова РАМН. Анксиолитическое действие афобазола не сопровождается гипноседативным эффектом. У препарата отсутствуют миорелаксирующие свойства, негативное влияние на показатели памяти и внимания. При применении афобазола не формируется лекарственная зависимость и не развивается синдром отмены [1].

Препарат препятствует развитию мембранно-зависимых изменений в ГАМКбензодиазепиновом рецепторном комплексе, наблюдаемых при формировании ЭСР и приводящих к снижению доступности бензодиазепинового рецепторного участка для лиганда [2].

Целью настоящей работы является разработка состава и технологии таблетированной формы афобазола методом влажной грануляции.

Материалы и методы. В качестве объектов исследования использовали субстанцию афобазола, различных производителей (Эррегиере (Италия) и ГУ НИИ фармакологии РАМН).

Афобазол-5-этокси-2-[2-(морфолино)-этилтио]-бензимидазола дигидрохлорид относится к производным 2-меркаптобензимидазола.

В качестве вспомогательных веществ применяли крахмал картофельный, лактозу, сахарозу, магния карбонат основной, кальция фосфат двузамещенный, поливинилпирролидон, метилцеллюлозу водорастворимую марки МЦ-100, микрокристаллическую целлюлозу «Avicel PH-102», магния стеарат.

С целью теоретического обоснования состава и технологии таблеток афобазола нами были изучены физико-механические и технологические свойства субстанции (сыпучесть, насыпная масса, плотность, удельная поверхность, эквивалентный диаметр частиц, пористость, прессуемость, угол естественного откоса, гранулометрический состав), представленные в табл. 1.

Таблица 1
Технологические характеристики субстанции афобазола различных производителей

Показатели	Ед. измере-	Производители субстанции		
	ния	Эррегиере (Италия) —	ГУ НИИ фармако-	
		№ 1	логии — № 2	
Сыпучесть	г/с	0	$2,46 \pm 0,09$	
Насыпная масса	г/см ³	$0,1156 \pm 0,0022$	$0,349 \pm 0,010$	
Плотность	г/см ³	$1,35 \pm 0,13$	$1,33 \pm 0,13$	
Удельная поверхность	мг/г	_	$1,013 \pm 0,048$	
Эквивалентный диаметр	MKM	_	$4,46 \pm 0,21$	
Пористость	%	_	47,88	
Прессуемость	Н	$6,15 \pm 0,7$	0	
Угол естественного откоса	град	$34,0 \pm 1,0$	48,0 ± 1,8	
Гранулометрический состав:	%			
частиц более 3 мм		0,9	2,57	
частиц от 2 до 3 мм		2,5	5,14	
частиц от 1 до 2 мм		16,8	12,13	
частиц от 0,5 до 1 мм		47,2	9,66	
частиц от 0,25 до 0,5мм		27,4	18,09	
частиц менее 0,25 мм		5,2	52,42	
Форма частиц		бесцветные призма-	бесцветные призмати-	
		тические кристаллы	ческие кристаллы и их	
		и их агрегаты	агрегаты	

Субстанция афобазола — белый или белый с кремоватым оттенком кристаллический порошок, легко растворимый в воде, растворимый в спирте 95%, мало растворимый в хлороформе [3].

Частицы афобазола по форме представляют собой анизотропические кристаллы в виде удлиненных призм и их агрегаты, в следствие чего обладают низкими реологическими свойствами, невысокой насыпной массой (№ 1 — 0,1156 \pm \pm 0,0022 г/см³ и № 2 — 0,349 \pm 0,010 г/см³). Сыпучесть субстанции № 1 — нулевая, субстанции № 2 — 2,46 \pm 0,09 г/с, обе субстанции имеют плохую сыпучесть. Прессуемость у субстанции № 1 — 6,15 H, № 2 — не прессуется.

При сравнении технологических характеристик субстанций афобазола различных производителей (Эррегиере (Италия) и ГУ НИИ фармакологии) было отмечено, что ряд показателей субстанций значительно отличается друг от друга, что не может не сказаться на технологии изготовления таблеток и их качестве.

Проведенное исследование показывает, что субстанция (в особенности, фирмы Эррегиере (Италия)) представляет собой рыхлый порошок с невысокой насыпной массой, что затрудняет непосредственное ее таблетирование, так как приводит к неравномерному заполнению матрицы пресс-инструмента. Поэтому в состав массы для таблетирования должны входить вспомогательные вещества с высокой насыпной массой, или субстанция должна быть подвергнута гранулированию с целью увеличения ее насыпной массы и получения более однородных по размеру и форме частиц.

Рекомендованная в результате фармакологических исследований дозировка афобазола в твердой лекарственной форме составляет 5—10 мг. Этого количества недостаточно, чтобы сформировать удобную для применения твердую дозированную лекарственную форму, поэтому необходимо введение в состав таблетки вспомогательных вешеств.

Технология выбранного нами метода влажного гранулирования предусматривает использование в качестве увлажнителей растворы высокомолекулярных соединений. Для этой цели нами использованы — 5% крахмальный клейстер, 10% раствор поливинилпирролидона, 2% раствор метилцеллюлозы, вода очищенная [Кузнецов А.В., 2002].

Модельные составы таблеток, полученных влажным гранулированием представлены в табл. 2.

Модельные составы таблеток афобазола

Таблица 2

Ингредиенты	№ состава					
на 1 таблетку, г	1	2	3	4	5	
Афобазол	0,005	0,005	0,005	0,005	0,005	
Лактоза	0,050	_	0,050	0,0485	0,0485	
Крахмал	0,029	0,029	0,027	0,0680	0,0480	
Caxap	_	0,050	_	_	_	
МКЦ	0,015	0,015	_	_	0,040	
ПВП	_	_	_	0,007	0,007	
MKO	_	_	0,015	_	_	
Кальция фосфат	_	_	_	0,020	_	
двузамещенный						
МЦ-100	_	_	0,002	_	_	
Магния стеарат	0,001	0,001	0,001	0,0015	0,0015	
Увлажненяющий	5% крах-	5% крах-	2% раствор	10% раствор	10% раствор	
агент	мальный	мальный	МЦ-100	ПВП	ПВП	
	клейстер	клейстер				

Для получения модельных составов таблеток афобазола отвешивали необходимое количество афобазола и вспомогательных веществ по соответствующим прописям (табл. 2). Перемешивали все компоненты в смесителе в течение 10 минут, добавляли гранулирующую жидкость в три приема и перемешивали каждый раз по 5 минут. Влажную массу переносили в бункер универсального гранулятора с размером отверстий сетки 3 мм, после гранулирования, раскладывали слоем 1—1,5 см на полки сушильного шкафа. Сушили при температуре 45 + -5 °C до оптимальной влажности $5.0 \pm 0.5\%$. Затем гранулировали на универсальном грануляторе через пробивное сито с размером отверстий 1-1.5 мм. Полученный гранулят опудривали в смесителе магния стеаратом. Полученную таблеточную массу таблетировали на таблеточном прессе «КОRSCH» (Германия) с рабочей частью пресс-инструмента диаметром 7 мм.

С целью наибыстрейшего проникновения растворяющей среды нами использована МКЦ, которая создает условия для достаточно быстрого проникновения растворяющей среды в таблетку. МКЦ вызывает образование в таблетке пористой структуры, которая способствует быстрому проникновению воды в ее массу. Кроме того, МКЦ обеспечивает необходимую механическую прочность. Поэтому в исследованиях по разработке состава таблеток афобазола в качестве наполнителя и разрыхляющего вещества была использована микрокристаллическая целлюлоза.

Для улучшения распадаемости в таблеточную массу вводили крахмал картофельный, в качестве антифрикционного вещества — магния стеарат. В табл. 3 представлены технологические характеристики гранулятов и полученных из них таблеток.

Технологические показатели гранулята и таблеток афобазола

Показатели	№ состава						
	1	2	3	4	5		
Влажность,%	$3,0 \pm 0,2$	$3,2 \pm 0,1$	$2,7 \pm 0,3$	$2,6 \pm 0,2$	2.9 ± 0.3		
Сыпучесть, г/с	$7,23 \pm 0,19$	$8,01 \pm 0,46$	$9,01 \pm 0,59$	$8,83 \pm 0,51$	$10,06 \pm 0,64$		
Прочность, Н	$30,5 \pm 2,51$	$30,03 \pm 1,71$	49,11 ± 1,03	$40,54 \pm 2,23$	$47,81 \pm 3,23$		
Распадаемость, мин	$18,87 \pm 0,19$	$17,38 \pm 2,24$	$20,46 \pm 1,53$	$17,22 \pm 1,69$	$3,81 \pm 0,55$		
Растворение за 45 минут, %	88,4 ± 2,19	90,6 ± 1,87	95,1 ± 0,97	93,1 ± 2,23	$97,0 \pm 2,09$		

Как видно из табл. 3, введение в состав таблеток магния карбоната основного в количестве 15%, а также кальция фосфата двузамещенного при влажности граулята 2—4% и использовании в качестве гранулирующей жидкости 2% раствора МЦ-100 и 10% раствора ПВП позволило добиться достаточной механической прочности таблеток (47,81 \pm 3,23 H) и высокой сыпучести (10,06 \pm 0,64 г/с) гранулята. Таблетки, содержащие крахмал и сахарозу или лактозу, гранулированные крахмальным клейстером, обладали меньшей прочностью (30,0 \pm 2,0 H), чем таблетки из гранулятов, в состав которых дополнительно вводили МКЦ, а время распадаемости полученных таблеток превышало регламентированные и составляло 17—20 мин.

С целью снижения времени распадаемости и повышения прочности таблеток в состав введена МКЦ Avicel PH-102, что позволило получить удовлетворительные результаты при увлажнении смеси порошков 10% водным раствором ПВП с последующим опудриванием сухого гранулята 1% магния стеарата при средней массе таблеток 0,150 г (состав № 5). Прочность и время распадаемости полученных таблеток составили 47,81 \pm 3,23 H и 3,81 \pm 0,55 мин, соответственно. Таблетки состава № 5 имели хороший внешний вид и удовлетворительные показатели качества и были рекомендованы к дальнейшему изучению в качестве оптимального состава получения таблеток афобазола 0,005 г методом влажного гранулирования.

Интенсивность перехода афобазола из таблеток в раствор устанавливали в соответствии с требованиями ОФС 42-0003-04 на приборе «Вращающаяся мешалка». Растворяющая среда — $0.01~\rm M$ раствор кислоты хлористоводородной, температура среды растворения — $37~\rm ^{\circ}C$ +/-1 $\rm ^{\circ}C$, скорость вращения мешалки — $100~\rm oб/мин$ [4].

Содержание препарата, определяемое ВЭЖХ, в таблетках через 2,5 года хранения остается в допустимых пределах $(0,0045-0,0055\ {\rm г/т})$. С помощью хроматографии в тонком слое сорбента выявлено отсутствие в таблетках продуктов разложения афобазола.

Таким образом, на основании проведенных исследований нами подобран и обоснован оптимальный состав вспомогательных веществ, разработана технология таблеток афобазола 0,005 г, полученных методом влажного гранулирования.

Таблица 3

ЛИТЕРАТУРА

- [1] *Незнамов Г.Г., Сюняков С.А., Чумаков Д.В.* Новый селективный анксиолитик афобазол // Журнал неврологии и психиатрии им. С.С. Корсакова. М., 2005. Т. 105. № 4. С. 48—54.
- [2] *Аведисова А.С., Чахава В.О., Лесс Ю.Э.* Новый анксиолитик «Афобазол» при терапии генерализованного тревожного расстройства (результаты сравнительного исследования с диазепамом) // Психиатрия и психофармакотерапия. М., 2006. Т. 8. № 3.
- [3] ФСП 42-0067620805 «АФОБАЗОЛ».
- [4] *Милкина С.Б. и др.* Анализ и стандартизация нового отечественного анксиолитического средства афобазол // Хим.-фармац. журн. 2006. Т. 40. № 7. С. 55—56.

THE DEVELOPMENT OF COMPOSITION AND TECHNOLOGY OF TABLETS AFOBAZOLA BY A METHOD WET GRANULATION

S.A. Sizjakov, L.N. Grushevskaya, M.E. Konochkina, B.M. Pyatin

State Zakusov Institute of Pharmacology RAMS Baltic str., 8, Moscow, Russia, 125315

K.V. Alexeev

Department of general pharmaceutical and biomedical technology Medical faculty Peoples' Friendship University of Russia Mikluho-Maklaya str., 8, Moscow, Russia, 117198

In clause researches on development of tablets new anxiolytic agents — 2[-2(morpholino)-aethil]-thio-5-aethoxibenzimidazoli dihydrochloride-afobazol are presented. The optimum structure of auxiliary substances, for manufacture of tablets afobazola by a method wet granulation is picked up and proved.