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The multidimensional models of the population dynamics are considered in the paper. These
models are the generalizations of the Lotka—Volterra model in case of interaction of the finite
number of populations. The deterministic description of the models is given by the systems
of the ordinary nonlinear differential equations presented in the paper in the form of the
multidimensional vector differential equations. The qualitative properties of the specified models
are sufficiently well studied by means of Lyapunov methods. However, the probabilistic factors
influencing on the behavior of models are not taken into account at the deterministic description
of models. The new approaches to the modeling and stability analysis are of theoretical and
applied interest in the nondeterministic case.

In this paper, the methods for design of multidimensional nondeterministic models of
interaction of populations are considered. The first method is connected with the transition
from the vector nonlinear ordinary differential equation to the corresponding vector differential
inclusions, fuzzy and stochastic differential equations. On the basis of the reduction principle,
which makes it possible to reduce the problem of the stability of solutions of a differential
inclusion to the problem of stability of solutions of other types of equations, stability conditions
for the constructed models are obtained. The second method is connected with the technique of
design of the self-consistent stochastic models. The scheme of interaction is received on the basis
of this technique. This scheme includes a symbolical record of possible interactions between the
system elements. The structure of the multidimensional stochastic Lotka—Volterra models is
described, and the transition to the corresponding Fokker—Planck vector equations is carried
out by means of the system state operators and the system state change operator. The rules for
the transition to the multidimensional stochastic differential equation in the Langevin form are
formulated. The execution of the numerical experiment with the application of the developed
program complex for solving the systems of the stochastic differential equations is possible for
the models which are the concretizations of the studied general models. The described approach
to the modeling of the stochastic systems can be applied in the problems of comparing of the
qualitative properties of the models in deterministic and stochastic cases. The obtained results
are aimed at the development of the methods for the analysis of nondeterministic nonlinear
models.
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1. Introduction

The stability research of the models of the population dynamics is an important
problem. Some directions of the solution of the specified problem are presented in the
works [1-7]. The questions of existence and stability of the solutions of the models
described by the differential equations of various types were considered in [8-12] and in
other works.

Lyapunov functions method is one of the widely used methods of the stability
research [10,11]. The stability of the solutions of classical and generalized models of the
population dynamics by Lyapunov function method was considered in [1]. The systemic
approach is described in [2,6-9] which allows us to consider properties of stability of the
models described by the differential equations of various types from the unified point of
view. The specified approach is based on the transition from the deterministic description
of the model to stochastic description and on the principle of reduction of the stability
problem of solutions of differential inclusion to the stability problem of other types of
the equations. The approach allows us to study the stability properties of solutions of
differential inclusions, the fuzzy and stochastic differential equations from the unified
point of view.

In this work we consider a nonlinear multidimensional model of the dynamics of the
populations interaction. The determined description of model is given by system of the
ordinary nonlinear differential equations. The transition from the specified model to the
corresponding nondeterministic models given by means of finite-dimensional differential
inclusions, the fuzzy and stochastic differential equations is performed. The stability
analysis is performed on the basis of the reduction principle in this work.

It is known [5, 13-15] that in the deterministic description of the model the
probabilistic factors affecting the behavior of the model are not taken into account. In
this connection, an important problem is construction and study of adequate stochastic
models, as well as a comparative analysis of the properties of deterministic and
corresponding stochastic models.

The technique of design of the self-consistent stochastic models [14] allows us to
take into account stochastics in the structure of the model without adding additive
stochastic terms. In this work the structure of the multidimensional stochastic Lotka—
Volterra models is described, and the transition to the corresponding Fokker—Planck
vector equations is carried out by means of the system state operators and the system
state change operator. The rules for the transition to the multidimensional stochastic
differential equation in the Langevin form are formulated. It is shown that the
used approach to construct multidimensional stochastic models can find application
in problems of comparing the qualitative properties of the generalized Lotka—Volterra
models.

2. Deterministic Models

We consider the model described by the system of differential equations of the form [1,
3]

n
Ty = T4 ai_g pijxj |, t=1,...,n, (1)
Jj=1

where z; is density of i-th population in moment ¢, 2, = dz;/d¢t, a; and p;; are growth
coefficients of i-th population in the absence of others, constants p;; at i # j characterize
the influence of interaction between populations on the rate of growth, P = (p;;),
1,7 = 1,...,n, is interaction matrix.

The model (1) is the classical Lotka—Volterra model for the n-dimensional case.
This model describes the dynamics of the biological community under the following
conditions:
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1) the relative growth rate of each population does not depend on the intrapopulation
structure;

2) this rate depends linearly on the number of populations in the community. These
conditions, characteristic of the Lotka—Volterra equation, represent a simplified
hypothesis about the nature of the interactions between populations in the community.
This hypothesis, known as the principle of pair interactions, suggests the additivity

of each population contribution to the relative growth rate, which is reasonably well

founded biologically. However, the linear nature of this contribution is much worse in
the processes occurring in biological communities, and can be taken into account in
approximating the equilibrium state in some neighborhood [1]. In this connection, the
study of the model (1) can be considered as an important stage preceding the study of
the models that are generalizations of the model (1).
A generalization of the model (1) is a model of the following form:

di=mi lai— Y piifilzy) |, i=1,....n, (2)
=1
3 i\ Lg .
where f;(R' — R') € C', f;(0) =0, % >0 with 2; > 0.
X

The stability conditions for solutions of the model (1), (2) on the basis of the Lyapunov
functions method are obtained in [1]. The stability conditions on the basis of the divergent
method are obtained in [3] for indicated models. The transition is possible from the
deterministic model (1), (2) to different types of the corresponding nondeterministic
models.

3. Design of Nondeterministic n-dimensional Lotka—Volterra
Models and Stability Analysis Based on the Reduction Principle

The nonlinear model (1) is presented in the form of the vector equation

&= f(x), (3)
where z = ($1,$27-~-7l‘n)7 f(fE) = (f17f27---7fn) = (1151((11 — P11y — ... —p1nl‘n),---7
Tp(@p — Pr1®1 — ... — Punn)), © € R, R} — n-fold Cartesian product of the set R

on itself, R, = [0,00), f : R} — R}

For the model (3) the coeflicients a; and p;j, 4, 7 = 1,...,n, can take different
values from the corresponding intervals [o,,u,] and [vij,,7ij,] taking into account
the ecological meaning accordingly. The transition from the model (3) to the finite-
dimensional differential inclusion is the following

1 €x1 (a1 —P11T1 — - — Din®n) -y &n € Tp (A — Pp1®1 — - — Ppun®n) . (4)
The model (4) in the vector form is presented as follows:
i € F(z), (5)
where
F(x) = {f(x)|a; € Ai,pij € Cyj}, Ai = [y, iy, Cij = [y, Vige) » F 2 R — 2ftt

The introduced sets A; and C;; define the sets of values of the corresponding
parameters a; and p;;.
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Subsets {Ai}o = {ai|pa,(a;) = a} and {Ci;}a = {pijlpc,, (pij) = o} represent
the narrower sets that we obtain when we take into account the additional conditions
a € (0,1], that affect the interaction of the components and, consequently, the stability of
the model (3). Then equation (3) can be replaced by a fuzzy finite-dimensional differential
equation

&= F(z), (6)

where F': Z7 — P(R!}), P(RY) is the set of all fuzzy subsets of R’}.

The differential inclusion corresponding to the equation (6) has the form ¢ € F,(¢),
where a € (0, 1], Fa () = {(2(t))]a; € {A;}as iy € {Cij}a}.

The following stability conditions of the differential inclusion (5) and the fuzzy
equation (6) we formulate by means of the principle of reduction [7,8] and by means
of the transition from model (1) to models (5) and (6):

1) if there is a Lyapunov function V for the closed set M C R! regarding the
inclusion (5), such that the inequality D,V (x) < 0 Va € B(M,r) is satisfied, where
D,V (z) = sup DV (z) is upper derivative of Lyapunov function, set B(M,r) is r-
neighborhood of the set M, then the set M is stable in small regarding this inclusion;

2) if the inequality DV (z) < —w(e(z, M)) Vx € B(M,r) is satisfied, where function
w: B(M,r) — R is the continuous and positive function in R’ \ M, then the set M
is asymptotically stable in small regarding the inclusion (5);

3) if there is a Lyapunov function V regarding the equation (6) for the closed set
M C P(RY), where P(R") is the set of all fuzzy subsets of R}, such that the
inequality D4V, (xz) < 0 Vo € B(M,,r) is satisfied at o € (0,1], then the set M
a-stable regarding this equation;

4) if the inequality D V,(z) < —wq(e(x,M,)) Ve € B(M,,r) is satisfied, where
we : (0,7) — R is the continuous and positive function, then the set M is a-
asymptotically stable regarding the equation (6).

In this work we consider the generalization of the model (3) to the stochastic case,
namely, the transition is carried out from the equation (3) to the corresponding stochastic
differential equation

&= S(x), (7)

where S(z) is the stochastic function. By means of the principle of reduction we formulate
the stability conditions of the fuzzy equation (6) and the stochastic equations (7).

It is shown that if the trivial solution of a fuzzy equation (6) is a-stable
(asymptotically a-stable) for every a € (0,1], then the trivial solution of the
corresponding stochastic equation (7) is stable on probability (asymptotically stable
on probability). In addition, the conditions of almost surely stability and stability on
average we give by the aid of the principle of reduction. The comparative analysis of the
qualitative properties of the deterministic and stochastic models is given on the basis of
the obtained sufficient stability conditions.

System (2) is represented as a nonlinear vector equation

& = g(x),
where
g9(x) = (91,92, -, 9n) = (w1(a1 —p11fi(x1) — ... = Pinfu(Tn)), ...
L ,xn(an —pnlfl(fl) — ... —pnnfn(mn)»a
g: R} — RY.

We consider the transition from this vector equation to the nondeterministic models
described by differential inclusion, fuzzy and stochastic differential equations. This
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transition is similar to the transition from the vector equation (3) to the models (5)—(7).
The stability conditions of the indicated differential inclusion, fuzzy differential equation
and stochastic differential equation are obtained using the reduction principle.

4. Design of the Self-Consistent n-dimensional Lotka—Volterra
Stochastic Models

The synthesis of some models of population dynamics on the basis of the method of
construction of self-consistent stochastic models [14] is implemented in [5,6]. According to
the main idea of the method it is possible for the system under consideration to describe
the scheme of interaction in the form of symbolic representation of all possible interaction
between the system elements. The operators of the system state and the operator of
change of the system state are used for this purpose. Then we give the intensities of
transitions and master equation, for which we can obtain an approximate Fokker—Planck
equation by the aids of formal series expansion. It is not difficult to transit from the
Fokker—Planck equation to the equivalent stochastic differential equation in Langevin
form:

dz(t) = a(t, z(t))dt + b(t, z(t))dW, (8)

where x(t) € R™ is the vector of the system state, a(t,x(t)) is the vector of demolition,

b(t,x(t)) is the diffusion matrix. In addition, in equation (8) W € R™ is the standard
n-dimensional Wiener process.

In practice, the stochastic differential equation can be written immediately after the
representation of the interaction scheme. It is connected with the fact that for the
obtained coefficients of the Fokker—Planck equation it is necessary to know only the
intensities of transitions and operators of state changes.

We present the scheme of interaction elements for the system (1) in the form:
X 25 2X;,

pij (9)
XZ'—FXJ' —)Xj,

where ,j = 1,...,n. Thus, the scheme (9) describes the system of n species in which
individuals can interact n(n + 1) various ways.

The first row of the scheme of interaction corresponds to natural reproduction
i-th species in the absence of other factors. The second row corresponds to intraspecific
competition at ¢ = j, corresponds to interspecific competition at i # j.

The operator of state change is presented in the form:

R={Ry,l=1,...,n, k=0,...,n},

where
i-th
=~
R 0,..., 1 ,...,0), I=1,....,n, k=0,
), =1,...,0), I=1,....,n, k=1,...,n.
~—
i-th
The state of the system can be described by means of vector = (z1,...,2,). The

following relations are given for intensities of transitions from the state x to the state
 + R in the unit of the time:

s1.k(T) = PikT1TE,
where l=1,...,n, k=0,...,n, and let zx, =1 if k = 0.
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Let us present Fokker—Planck equation corresponding to the model in the form:

n

0P, 1) = = 3 0u, [Al) Pl 0)] + 5 S 00,0y, [By(@)P(a, )]

i=1 ij=1
where

Ai(z) = ZRijSij(ﬂf) = DioTi — sz‘jﬂfil’j,

j=1 j=1

Bz‘j(l") = Z Rij (Rij)T Sz’j(l') = Piox; + Zpijl“z'l“j, and Bij =0, # J.
j=0

j=1

We have the following relations for the coefficients of stochastic equation (8) and
coefficients of Fokker—Planck equation:

a(x) = A(z),
b(z) = B(z)B(x)T.

The obtaining of analytical solution for the constructed self-consistent stochastic
Lotka—Volterra model is difficult, however, for special cases of the general n-dimensional
model, it is possible to conduct a numerical experiment using the developed software
package for the solution systems of stochastic differential equations [16,17]. In the
future, it is planned to conduct a numerical analysis to obtain numerical solutions for
the obtained models, as well as to reveal the influence of stochastics on the behavior of
the system.

The investigation of the obtained stochastic differential equation in Langevin form
allows us to study the influence of stochastics on the behavior of the considered system.
This approach to the construction and analysis of nonlinear models can serve to the
solving of problems aimed at the comparative analysis of deterministic and stochastic
models.

Note that the technique of design of the self-consistent stochastic models can be
applied to the system (2), but for this it is necessary to specify the form of the functions
fj(z;) taking into account the physical sense. In the problems of constructing of self-
consistent stochastic models that generalize models (1) and (2), the consideration of
two-dimensional, three-dimensional and four-dimensional models is of prime interest,
and it becomes necessary to compare stability properties in deterministic and stochastic
cases.

5. Conclusions

The principle of reduction allowed us to obtain the conditions of stability of the
multidimensional model of the population dynamics with the transition to the differential
inclusion, fuzzy and stochastic differential equations. The specified transition takes into
account the changing parameters of the model and allows us to perform a comparative
analysis of the properties of the models based on the principle of reduction. The stability
conditions can be used to study the population dynamics models. The application of self-
consistent stochastic models construction method for Lotka—Volterra multidimensional
systems allows us to estimate the impact of the introduction of stochastics onto the
behavior of these systems.The obtained results are aimed at further development of
methods of design and stability analysis of stochastic models.
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IlocTpoenne n aHa/In3 yCTOMYMBOCTU HEAETEPMUHUPOBAHHBIX
MHOTOMEPHBIX MojieJieil AMHAMUKU TOILYJISIIAi

A. B. Jemugosa*, O. B. JIpy>xununa’®, O. H. Macuna’

* Kagpedpa npuraadnoli unGopmamury u meopuu eepoamuocmet
Poccutickuti ynusepcumem dpyorcbo. Hapodos
ya. Murayxo-Maxaas, 0. 6, Mocksa, Poccus, 117198

f Dedeparvrniili uccaedosamenveruti uenmp «HUngopmamura u ynpasacrues PAH
ya. Basuaosa, d. 40, Mockea, Poccus, 119338

i Hrnemumym npobaem ynpasaenus um. B. A. Tpanesnuxosa PAH
ya. Ipogcorosnasn, 0. 65, Mockea, Poccus, 117997

§ Eneuxuti 2ocydapemsenmnoti ynusepcumem um. U. A. Byrnuna
ya. Kommynapos, 0. 28, e. Eaey, Poccus, 399770

Paccmorpenbl MHOTOMEPHBIE MOJIE/TH TTOMYJISIIUOHHON JIMTHAMUKH, SIBJISIONIAECS: OOOOIIEHUSIMU
mogenu Jlorku—Bosbreppa Ha cirydail B3anMoIeficTBUsT KOHEIHOTO Yucjaa nonyadanuit. Jlerepmu-
HUCTHYECKOE OIUCAHUE MOJIesIeil JaéTcst cucTeMaMy OOBIKHOBEHHBIX HEJTMHEMHBIX JirddepeHiu-
aJbHBIX YPaBHEHUI, IPEJICTABJIEHHBIMU B paboTe B BHUJE MHOI'OMEPHBIX BEKTOPHBIX Juddepen-
MUaJbHBIX ypaBHeHuit. KauecTBeHHbIE CBOMCTBA YKA3aHHBIX MOJEJIEl JJOCTATOYHO XOPOIIO U3Y-
YEHBI ¢ TIOMOIIBIO MeTo10B JIsamyHoBa. OaHAKO IIPU JETEPMUHUCTUYIECKOM OIMUCAHUYI MOJIEIEH He
VAUTBIBAIOTCS BEPOSITHOCTHBIE (DaKTOPHI, BIAULAIONINE HA IOBEJIEHUE MoJieseil. B HexerepMuHu-
CTHUYECKOM CJIydae HOBBIE IIO/IXOAbI K MOJIEJIMPOBAHUIO U aHAJIU3Y YCTOHYUBOCTU IIPEACTABJISIOT
TeOpeTUYeCKUil 1 MPUKJIAJIHOI UHTEpEC.

B nacrosieit pabore paccCMOTPEHBI CITOCOOBI ITOCTPOEHKUSI MHOTOMEPHBIX HEIEeTEPMUHUPOBAH-
HBIX MoOjeseil B3auMomeicTBust nomy isamnuil. [lepBoiit cmocod cBsizaH € MEpPexoaoM OT BEKTOP-
HOT'O HEJTMHEWHOrO OOBIKHOBEHHOTO /(b DEPEHITHATLHOIO YPABHEHHUS K COOTBETCTBYIOIIUM BEK-
TOPHBIM TudepEeHITNATBHBIM BKJIIOYEHUIM, HEIETKAM U CTOXaCTUIECKAM I PepeHInaATbHBIM
ypaBHeHusiM. Ha OCHOBe NpUHIUITA PEIYKIMH, ITO3BOJISIIOIIET0 CBECTH 33129y 00 YCTORIMBOCTH
pettennit quddepeHnajIbHOTO BKIYEHUs K 33/1a4e 00 YCTOMYIUBOCTH PeIleHuil JIPYTUuX TUIIOB
YPaBHEHUI, MTOJIYUYEeHbI YCIOBUS YCTONYNBOCTH JIJIsI TIOCTPOEHHBIX MoJeseii. Bropoit criocob cBsi-
3aH C METOJUKOM IMOCTPOEHUsI CAMOCOTJIACOBAHHBIX CTOXAacCTHIeCKUX Mozeseii. Ha ocHose sToit
METO/IUKH TIOJIydeHa CXeMa B3aMMOJIEHCTBHUsI, KOTOPAasi BKJIIOYAET B C€0s1 CUMBOJIMYIECKYIO 3AIHCH
BO3MOXKHBIX B3aUMOJEHCTBUI MeKIy sjieMeHTaMu cucreMbl. C IMOMOIIBIO OIEPATOPOB COCTOSI-
HUS CUCTEMBI U OIlepaTopa M3MEHEHUs COCTOSHUS CHCTEMBI OMCaHa CTPYKTYpPa MHOT'OMEPHBIX
croxacTudeckux mojesieit JIorku—BoJsibreppa, u OCyIeCTBIIEH ITepeXo/] K COOTBETCTBYIOIINM BEK-
TopHbIM ypaHeHusiM Pokkepa—Ilnanka. ChopMyanpoBaHbI IIpaBu/ia IEPEX0oa K MHOIOMEPHO-
My cToxacTudecKkoMmy puddepeHnuaabHoMy ypaBHenuio B ¢gopme Jlamxkepena. st momeneit,
ABJIAIONIUXCH KOHKDPETU3AIUAMHI U3y4aeMbIX OOIIUX MOJesell, BOSMOXKHO IPOBEJIEHNE YUCJIeH-
HOI'O 9KCIIEPUMEHTa C IIPUMEHEHHEM pPaspabOTAHHOIO MPOrPAMMHOIO KOMILIEKCA IS PEITeHUSs
CHUCTEM CTOXACTHUYECKUX audpepeHnnaabubix ypaBHennii. ONuCaHHbIN MOIXO0M], K MOJETUPOBa-
HUIO CTOXACTUYECKUX CUCTEM MOXKET HAWTU IPUMEHEHUE B 33/1aYaX CPaBHEHUsI KAUeCTBEHHBIX
CBOMCTB MOJIesiell B JIETEPMUHUPOBAHHOM M CTOXACTUIECKOM ciaydasx. [lomydennbie pe3ysibTaTsl
HalIpaBJIEHBbl Ha Pa3BUTHUE METOOB aHAJIN3a HeJeTepPMUHUPOBAHHBIX HEJIMHENHBIX MomeJIei.

KimoueBnlie cJIoOBa: MOJeJb TIOMYJIAITAOHHOMI JUHAMUKH, YCTONYMBOCTD,
nuddepeHaIbHbIe BKIIOYEHNsI, CTOXaCTHYeCKas MOJIE/Ib, IPUHIUI PeyKIIUH
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