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The chiral model of graphene based on the 𝑆𝑈(2) order parameter is suggested in the
long-wave approximation, the ideal graphene plane being determined by the kink-like solu-
tion. Corrugation of the graphene surface is described in the form of ripple and rings. The
approximate solution corresponding to an infinite carbon nanotube is found.
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1. Introduction. Structure of the Model

Since the very discovery of mono-atomic carbon layers called graphenes this ma-
terial attracted deep interest of researchers due to its extraordinary properties con-
cerning magnetism and high electric conductivity. The concept behind this research
is the following. As is well known, the carbon atom possesses of four valence electrons
in the so-called hybridized 𝑠𝑝-states, the one of them being “free” in graphene lattice
and all others forming 𝑠𝑝-bonds with the neighbours.

It appears natural to introduce scalar 𝑎0 and 3-vector a fields corresponding to
the 𝑠-orbital and the 𝑝-orbital states of the “free” electron respectively. These two
fields can be combined into the unitary matrix 𝑈 ∈ 𝑆𝑈(2) considered as the order
parameter of the model in question, the long-wave approximation being adopted, i. e.

𝑈 = 𝑎0 𝜏0 + 𝚤a · 𝜏, (1)

where 𝜏0 is the unit 2× 2-matrix and 𝜏 are the three Pauli matrices, with the 𝑆𝑈(2)-
condition

𝑎20 + a2 = 1 (2)

being imposed. It is convenient to construct via the differentiation of the chiral field (1)
the so-called left chiral current

𝑙𝜇 = 𝑈+𝜕𝜇𝑈, (3)

the index 𝜇 running 0, 1, 2, 3 and denoting the derivatives with respect to the time
𝑥0 = 𝑐𝑡 and the space coordinates 𝑥𝑖, 𝑖 = 1, 2, 3. Then the simplest Lagrangian
density will be given by

ℒ = −1

4
𝐼 Sp(𝑙𝜇𝑙

𝜇)− 1

2
𝜆2a2 (4)

and corresponds to the sigma-model approach in the field theory with the mass term.
Here the constant model parameters 𝐼 and 𝜆 were introduced. Comparing the La-
grangian density (4) with that of the Landau—Lifshits theory corresponding to the
quasiclassical long-wave approximation to the Heisenberg magnetic model [1–4], one
can interpret the parameter 𝐼 in (4) as the exchange energy between the atoms (per
spacing).

Inserting (1) into (3) and (4) and taking into account the condition (2), one easily
finds the following Lagrangian density:

ℒ =
1

2
𝐼 (𝜕𝜇𝑎0 𝜕

𝜇𝑎0 + 𝜕𝜇a · 𝜕𝜇a)− 1

2
𝜆2a2. (5)
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For the case of small a-excitations the equations of motion generated by (5) read as

�a− (𝜆2/𝐼)a = 0

and correspond to the dispersion law

𝜔 = 𝑘0𝑐, 𝑘20 = k2 + 𝜆2/𝐼,

which in the high-frequency approximation has the linear photon-like form.

First we begin with the static 1𝐷 configuration corresponding to the ideal graphene
plane, the normal being oriented along the 𝑧-axis. In this case the order parameter
has the form

𝑈 = exp(𝚤𝜓𝜏3), 𝜓 = 𝜓(𝑧),

with the Lagrangian density being

ℒ = −1

2
𝐼𝜓′2 − 1

2
𝜆2 sin2 𝜓. (6)

The Lagrangian (6) yields the equations of motion

2𝐼𝜓′′ − 𝜆2 sin 2𝜓 = 0. (7)

The solution to (7) satisfying the natural boundary conditions

𝜓(−∞) = 0, 𝜓(+∞) = 𝜋

has the well-known kink-like form

𝜓0(𝑧) = 2 arctan exp(𝑧/ℓ) (8)

with the characteristic thickness (length parameter)

ℓ =
√
𝐼/𝜆 (9)

and the energy per unit area

𝐸 =
1

2

∫︁
d𝑧
(︁
𝐼𝜓′

0
2
+ 𝜆2 sin2 𝜓0

)︁
= 2𝜆

√
𝐼.

2. Ripple on graphene surface

Let us now consider small static perturbations to the solution (8) in the vicinity
of the ideal graphene plane, i. e. for small 𝑧. Since 𝜓0(0) = 𝜋/2, one finds for the
perturbations 𝜉 = 𝛿𝑎3 and 𝑎+ = 𝑎1 + 𝚤 𝑎2 the following equations:

△𝜉 = 0, (△− ℓ−2)𝑎+ = 0. (10)

The Descartes coordinates 𝑥, 𝑦 being the coordinates of the ideal graphene plane
𝑧 = 0, one easily finds the excitations of the periodic form:

𝜉 = 𝜉0𝑒
𝑘𝑧 cos 𝑘𝑥, 𝑎+ = 𝐴+ 𝑒

�̄�𝑧 cos 𝐾𝑥, 𝐾2 = 𝑘2 − 𝜆2/𝐼, (11)

where 𝑘ℓ > 1. The exponential increasing in 𝑧 of the solution (11) signifies the
instability of the ideal graphene plane first mentioned by N.D. Mermin and H. Wagner
in 1966 for the case of magnetics.
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There exist also the ring excitations of the axially-symmetric form:

𝜉 = 𝜉0𝑒
𝑘𝑧 𝐽0(𝑘𝜌), 𝑎+ = 𝐴+ 𝑒

𝚤𝑚𝜙𝑒�̄�𝑧 𝐽𝑚(𝐾𝜌), (12)

where 𝐽𝑚 is the Bessel function of the 𝑚-th order, 𝑚 = 0, 1, 2, . . ., and 𝜌, 𝜙 are the
polar coordinates in the graphene plane. Thus, one concludes that the graphene plane
has the tendency of bending. The corrugation of the graphene plane was observed
experimentally [5–7].

In view of (10) it should also be underlined that the dispersion curve reveals the
anisotropic character and has the two branches. The first one concerns the transverse
𝑎3-perturbations and has the photon-like behaviour. The second one concerns the
longitudinal 𝑎1- and 𝑎2-perturbations and has the “massive” behaviour mentioned
above.

3. 𝐶-nanotubes

Let us now search for the static axially-symmetric configuration of the form

𝑈 = exp(𝚤𝜓𝜎), (13)

where
𝜓 = 𝜓(𝜌), 𝜎 = 𝜏1 cos 𝜙+ 𝜏2 sin 𝜙, 𝜙 = 𝑛𝜙, 𝑛 = 1, 2, . . . .

The configuration (13) describes the infinite 𝐶-nanotube with the hedgehog structure
in the transverse section. Substituting (13) into (4), one gets

ℒ = −1

2
𝐼

(︂
𝜓′2 +

𝑛2

𝜌2
sin2 𝜓

)︂
− 1

2
𝜆2 sin2 𝜓. (14)

The corresponding equations of motion for the chiral angle 𝜓(𝜌) read

2 𝜌(𝜌𝜓′)′ = (𝑛2 + 𝜌2/ℓ2) sin 2𝜓. (15)

After changing the variable 𝜂 = log(𝜌/ℓ) one finds in the limit 𝑛 ≫ 𝜌/ℓ the solution
to the equation (15) of the kink-like type:

𝜓(𝜂) = 2 arctan[exp(𝑛𝜂0 − 𝑛𝜂)] (16)

satisfying the boundary conditions

𝜓(+∞) = 0, 𝜓(−∞) = 𝜋,

where the parameter 𝑅 = ℓ exp 𝜂0 plays the role of the tube radius. Inserting (16)
into (14), it is possible to calculate the energy of the 𝐶-nanotube per unit length:

𝐸 = 2𝜋𝐼𝑛2
∫︁
d𝜂 sin2 𝜓 = 4𝜋𝐼𝑛. (17)

It is worthwhile to remark that the integer number 𝑛 in (17) is the so-called topological
charge of the degree type (the winding number)

𝑄 =
1

4𝜋

∫︁
𝑆2

d𝜙d𝜓 sin 𝜓 = 𝑛. (18)

As follows from (17) and (18), the energy of the tube per unit length is proportional
to the topological charge 𝑄 = 𝑛.
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4. Discussion

The proposed chiral model of the graphene permits one to describe the ripple
structure of the real graphene surface illustrating the Mermin–Wagner instability of
the 2𝐷 configurations. It also contains very simple graphene and tube solutions, the
latter one confirming the existence of carbon nanotubes. In future it is desirable to
include in the model the interaction with the electromagnetic field for the description
of conductivity and magnetic properties.
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УДК 538.91
Киральная модель графена
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В длинноволновом приближении предложена киральная модель графена, построен-
ная на основе матричного параметра порядка из группы 𝑆𝑈(2). При этом идеальная
графеновая плоскость определяется кинковым решением. Описывается возмущение гра-
феновой поверхности в виде ряби и колец. Находится приближённое решение, соответ-
ствующее бесконечной углеродной нанотрубке.
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