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Abstract. The calculation and prediction of the long-term safety of building
structures is associated with the dynamics of the stress state of their composite
elements and leads to relaxation problems for assessing the redistribution of
stresses between the components that make up the structural element. In this
study, reinforced concrete elements and the redistribution of stress from concrete
to reinforcement are considered. To solve the corresponding relaxation problem
an approach based on the concept of the strength structure of materials is
proposed, which considers them as a union of their fractions (layers, fibers)
with statistically distributed strengths. The loss of the ability of force resistance
caused by loading by part of the fractions of the element entails a redistribution
of stresses to its entire fractions. As a result of this, a nonlinear dependence of
deformations on the design stresses arises, calculated under the assumption of
equal strength of all fractions. For a material isotropic in strength, the relaxation
problem is reduced to solving a linear integral equation conjugated with its linear
rheological equation. The linear integral equation relatively structural stresses is
reduced. After solving it, the desired stress is determined as the root of the alge-
braic equation connecting the structural and design stresses. The proposed ap-
proach significantly simplifies the obtaining of necessary for the long-term
safety prediction of structures stress estimates in the components of structural
elements.

Keywords: stress relaxation, creep of constructions, deformation of construc-
tions elements, long-term safety of constructions
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AHHoTanus. PacyeT ¥ NporHo3 ANUTENBHON 0€30MaCHOCTH CTPOUTENBHBIX KOH-
CTPYKLMH CONpPSDKEH C AMHAMHMKOH HAIlpsyKEHHOTO COCTOSHUSI MX KOMIO3UTHBIX
3JIEMEHTOB M NPHMBOAUT K 3aJayaM peaKcaluy JJis OLIEHKU IepepacrpeeeHus
HalpsHKEHUH MEKIY COCTAaBIAIOIIMMU KOHCTPYKTHBHBIM 2JIEMEHT KOMIIOHEHTAMH.

B nccrnenoBanum paccMaTpuBaroTCs JKene300€TOHHBIE JJIEMEHTHl M Iepepactipesie-
JICHHe HalpshKeHUs ¢ OeToHa Ha apMaTypy. JJist pereHunst COOTBETCTBYIOMIEH pernak-
CAlLlIOHHOM 3a/1auMl IIpeularaeTcs MoJXo/, OCHOBAaHHBIN Ha KOHIEIIMU ITPOYHOCT-
HOM CTPYKTYpbl MATE€pHUAJIOB, PACCMATPUBAIOLIEil UX Kak 00beJUHEHHE CBOUX (hpak-
Uil (CII0eB, BOJIOKOH) CO CTaTHCTUYECKU paclpe/ieIeHHbIMU NMPOoYHOCTAMHU. Ilo-
poxJaeMasl Harpy>KeHUeM I0Tepsi CIOCOOHOCTU CUJIOBOIO COIPOTUBIIEHHS YaCThIO
(bpakimii a7eMeHTa BIeUeT IepepacipeiesieHne HalpshkeH!H Ha ero Hesble (pak-
miu. B pesysbrare BO3HHMKaeT HEJIMHEHHas 3aBHCHMOCTB jAedopMmarmii ot pacyer-
HBIX HAaIPSHKEHUH, pACCUNTAHHBIX B IPEATIONOKEHUH PaBHOIIPOYHOCTH BCeX (pax-
1il. s H30TPOIHOrO 1O NPOYHOCTH MaTepuana peslakCallioOHHas 3a/1a4a CBOIUTCS
K PELIECHUIO JIMHEHHOr0 MHTErpalbHOIO YPaBHEHMUS, COMNPSHKEHHOTO C €ro JIMHEH-

HBIM PEOJIOrMYECKUM ypaBHEHHEM. BbIBOAUTCS IMHEHHOE UHTErpaIbHOE ypaBHEHUE
OTHOCHTENBHO TaK Ha3bIBAEMOTO CTPYKTYPHOTO HAIPSKEHUSI CIIOCOOHOH K CHIIOBO-
My CONPOTHBIICHHIO YacThIO 37eMeHTa. [lociie ero pemeHns HCKOMOE HaIpsHKCHHE
OTpeeNsAeTcs KaK KOPeHb alreOpandecKoro ypaBHEHNsI, CBS3BIBAIOIIETO CTPYKTYp-
HbI€ U pacueTHble HampsbkeHus. IIpeuiaraeMblii MOAXO[ CYIIECTBEHHO YIPOLIAET
HOJIy4yeHUue HeOOXOIUMBIX B IPOrHO3E ATUTEIbHON 0€30MacHOCTH COOPYKEHUil
OLICHOK HAIPsDKEHUI B KOMIIOHEHTAX KOHCTPYKIMOHHBIX JIEMEHTOB.
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Introduction

In a global sense, the relaxation phenomenon represents the process of thermodynamic equilibrium estab-
lishing in a system consisting of a large number of particles. In structural mechanics, relaxation is understood as
a reduction in stresses when the initial deformation is fixed by the bonds. From the point of view of physical
chemistry, stress reduction occurs due to intermolecular displacements and reorientation of the intramolecular
structure, and therefore the similarity of relaxation and creep phenomena is manifested. In this paper on the basis
of the accepted concept of the strength structure of materials the modification of known in the linear creep theory
L. Boltzmann’s superposition principle [1] is obtained allowing its applicability under nonlinear dependence of
deformations on design stresses.

Relaxation problems are associated with the phenomenon of creep — an increase in deformation £(t)-
generated by stress o(t,) when T > t,. Stresses o(t) decrease over time with constant deformation €(t,)
and this phenomenon is called stress relaxation. The phenomenon of relaxation is a consequence of
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the development of creep deformation in the material €,(t,¢t,), because with a constant total deformation
e(ty) = g,(t) + g,(t, ty) due to an increase in deformation €,(t, ty), the portion €, (t) of instantaneous defor-
mation decreases and the stress o(t) = E(t)e,(t) decreases. This means that creep and relaxation phenomena
take place simultaneously.

Continuous redistribution of stresses between concrete and reinforcement is essential for their current
stress-strain state. Stress relaxation in the concrete component of the structural element entails an increase in the
stress in the reinforcement and its significant excess over the calculated one can lead to breaking of the rein-
forcement and to serious consequences in critical structures (in reinforced concrete reactor shells, water ducts).

The standard method for solving the considered problems is the preliminary determination of the relaxa-
tion kernel by a given creep kernel. However, the solution of the corresponding integral equation is expressed in
a very slowly converging series [2]. The application of the Laplace transform and the Poincare small parameter
method is busy and time-consuming [3].

The solution of relaxation problems is greatly simplified when the corresponding integral equations of
state are reduced to their differential forms. In this paper, the linear integral equation of state of uniaxially loaded
concrete is reduced to a simple linear differential equation of the first order. This takes into account the presence
of a single aging function that determines the evolution of the elastic modulus and the creep measure.

Remark 1. The key point of this method is the linearity of the integral equation of state. In the nonlinear
statement, the transformation to a linear differential equation becomes possible after the derivation of the linear
relative to structural stress (based on a modification of L. Boltzmann's principle) statement equation of concrete.

Rheological equations of mechanical state

Creep deformation under simple loading o(7),
g, (t,T) = C*(t, )0 (1). (1)
Take the measure of creep of concrete in the form
C*(t, 1) = C(0,28)6(D)f (t — D), 2

where 0(1) — the aging function; f(t — T) — the creep strain accumulation function; tlim C*(t,T) =C*(o0,1).

Based on experimental data [4], the following structure of the aging function was established in [5]:

__R(28) _ E(28) _ C*(o,1)
00 = R(t)  E(M)  C(»,28) 3)

Denoting C*(o0,28)f(t — 1)=C",f (t — T) 1 6(t)o(1)=6(1), according to (2) and (3) we have

(¢, = 6(0C(t,1); 8(0) = R(28)n(1), “)
where n(t) = % — the stress level; R(28) — the strength of concrete at the age of 28 days.
Corresponding to the increment of the stress level An(t;) = ?;E—;i)) at the moment t; a partial increment
of creep deformations at the moment 7 is
AEH (t, Ti) =C (t, TL)R(28)AT'| (Ti) = CS (t, rl-)A’G(‘ri). (5)

Since each increment Ag, (t, T;) depends only on the magnitude of the level and t — t;, then the increment
AG(t) = Xiz, AS(Ty) (6)
responds to creep deformation increment

Ay (¢, to) = ity Co (¢, T)AB(T). (7
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By passing in (7) to the limit and integrating in parts we have
X ~ " ~ t ~, 0Cy(t,
Beq(t, ) = C5 (£, 0(8) — C5 (&, £)8 (k) — [, 3(1) 22 dr. (8)

The increment of the total deformation €(t, t,) = ¢, (t) — g, (ty) + A, (t, ty) and, adding to Ae, (¢, ty)
the deformation, caused by stress 6(t,), we obtain a linear rheological equation of concrete under uniaxial loading

et to) = 5+ Co(6,00(8) -} 8()o() 2D dr. ©)

When 0(t) = 1 the parameters E(t) and C*(t, ) are time-invariant for ageless concrete

e(t, ty) = ;’((g + C3(t, t)a(t) —f (r)%dr. (10)

Remark 1. Boltzmann's superposition principle is formulated for ageless concrete (ideal) material. When
taking into account aging, the superposition of partial creep deformations is realized by partial increments of

the reduced stress 6(t) = 6(t)o(1), corresponding to increments of the level n(t) = % of stresses o(T).
The creep deformation accumulation function is selected in the form
fe—1)=[1-ke VD], 0<k<1
and thus [6]:
C*(t,T) = C(,28)0(7)[1 — ke YD) (11)

Remark 2. When in (11) we have k < 1, a summand C*(t,t)o(t) # 0 and it is called short-term creep.
Taking measure (11) with k < 1, some authors [7] assume the inertia-free nature of the creep phenomenon,
while other authors [8] (since the creep measure determines precisely delayed deformations), assuming the iner-
tia in time of this phenomenon, take the creep measure (11) with k = 1

C*(t, 1) = C(o0,28)8(1)[1 — e YD), (12)
According to (9) and (12) we have C*(t,t) = 0

t acy(t,
e(t, ty) = % ~ [} 8(Do(x) 2 g (13)

The measure (12) is taken in this paper.
GCO(tI) 6C (t'r)

Since with measure (12) we have —0(1) , then according to (13)

e(t, to) = g((;) +y0 (02D g, (14)
The value of
8(t, 1) _m-l'C(t T) (15)

in building codes it is taken as the general compliant of instantaneous and delayed deformations and under sim-
ple loading o(T)

oM 4 C(t,vo(7). (16)

e(t,t) = D)
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The imposition of deformations is carried out with general compliance

8 (t, 1) = % +C* (1) (17)
and when loading o(t), we assume
e(t, 1) = % + C*(t,)o(1). (18)

According to (16) and (18)

1 1 %
ﬁ-'_ C(t,T) = H-F Cc (t,’l’),

1 1
E() E@®) (19)

c*(t,t) =C(t,1) +

Equality (19) means, that with compliance 8(t, ) the measure C*(t, t)of creep deformations decreases
by an amount

1 1

[E(T) E(t)]'

In the works [7-9], assuming E(t) = E(t); ty < t <t the rheological equation is derived by applying
partial increments of creep deformation

t t ac(t,
e(t, to) = % — J; o) =2, (20)

equivalent according to (19) to equation

e(t, ty) = oM _ fi) G(T)iLdT— fto o(1)

ac(t,T)
B 9t B t LAt (21

0

Remark 3. Equations (20) and (21) describe the same mechanical state of concrete, which was not noticed
by the authors of [10]. This led to the statement [10] that the second component in (21) is unnecessary and to
an incorrect representation of the superposition principle “as a fundamental error in the theory of creep” [11].

The force increasing by a normal cross-section N(t) entails the destruction of a part of the fractions, re-
ducing the cross-sectional area A to A(t), formed by whole fractions at the moment t. The value associated with
structural damage

N
0c(v) = 5 (22)
is called the structural, and the value of
o(t) =2 (23)

is called the calculated normal voltage in the structural element. According to (22) and (23)

A
0c(0) = 1500 = $° (Mo (D), (24)
where the function S°(1) = % describes the process of destruction of fractions, accompanied by a redistribu-

tion of loading N(t) on the area A(T), because only fractions that are entire at this moment exert force re-
sistance. In contrast to the linear formulation, which means the equal strength of all fractions of the element,

538 ANALYSIS AND DESIGN OF BUILDING STRUCTURES



TTapuoros E.A., Hasapenko B.I"., PsHkosckast M., purbko E.A. CTpovTenbHast MexaHIka MHKEHEPHBIX KOHCTPYKLIA 1 coopyxeuir. 2022. T. 18. Ne 6. C. 534-543

the stepwise increment of stress Ao = Y)}[-; Ao(t;) does not correspond to mutually independent increments of
creep deformations — the action Ao(t;) at the moment T = T; is enhanced by the action of Ao(t;), where
j > i [12]. Note also that the area A(t;)is determined by all increments Ao (ty); k < i.

This circumstance leads to the need to modify the principle of L. Boltzmann's superposition. Since
the cause of the dependence between Ag,(t, T;) is the equal strength of the fractions, we will (mentally) select
in the concrete component V of the structural element its part V;, consisting of entire fractions in the segment
[to, £]. Just for this part the rheological equation describes the stress-strain state (SSS) taking into account
the rheology at [#, £].

Since the (SSS) of the part V; at the current momentt €[#, f] coincides with the (SSS) in the part Vi,
consisting of entire fractions at the moment T, the stress in V;is a structural stress o.(t). Strength balance of
the fractions V;to T = t entails mutual independence of increments

Ae,(t,t;) = C*(t,t;)Ao.(1;)
and stress Ao (t) = Yi=; Ao, (t;) generates deformation
Agy(t, o) = Xieq C7(t, T do () = Xisq Co (¢, 1)0(T) Ao (T)). (25)

The relation (25) allows (by repeating the above constructions) the derivation of the rheological equation
of the mechanical state in a nonlinear formulation [13; 14]

c(t t aCy (¢,
e(t, ty) = ‘;(—(t)) — I, 8(Doc(D) 2l gr, (26)
50 t t aC, (¢,
et ty) = gz;()-—_goe(r)so(T)oc(r) 20D gr. 27)

Remark 4. Relation (25) represents the principle of superposition of creep deformations for an aging mate-
rial (in the concept of its strength structure) in a nonlinear formulation.
In [9], assuming the interdependence of partial increments, the equation is derived

Su [;8] t o [o@]ac* D
e(t, ty) = —— ) fto [R(T) - dr. (28)

In (28) S, [G(t)] nd S, [R o — nonlinear functions of instantaneous deformations and creep deformations.

Remark 5. In the physical aspect, both types of deformations are generated by a single force factor — struc-
tural stress o.(T) — and therefore S,,[n(t)] = o.(t) and S;[M(1)] = 0.(T). According to o.(t) = S°(1)o(7)
the unified stress function is represented as S[o(1)] = S°(1)0 (7).

The nonlinear function S°(t) in applications is given by the equation [15]

SO =1+V [ZET;] , (29)

where V and m are empirical parameters and for concrete m = 4 is usually assumed.

Equation (9) does not take into account the nonlinearity of the diagram ¢ — € observed in experiments and,
as A.A. Gvozdev first noted, is not suitable for the theory of reinforced concrete. Assuming the dependence of
the instantaneous deformation on the linear one o(t), and the creep deformation as the nonlinear one, he consi-
dered the surge in the initial section 0 — € as a consequence of the rapidly flowing creep. According to
A.A. Gvozdev [16], creep is two-component and deformation €,(t, ty) consists of the so-called partially reversi-
ble deformation of the 2nd kind and irreversible deformation of the 1st kind generated by force damage. Equa-
tion of two-component creep theory under uniaxial loading [3]

® t ac(t,t) acs(t,1)
e(t,t0) = g3 = Iy, 0 52 5| dv = [ 0@ 252 det [T f(@FIT (0,01 %52 do, (30)
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where f(0) is a nonlinear stress function; F[T(o,t)] — a function of the total duration T(o,t) of the stress to
the moment ¢.
Denoting A, (T) as a part of the area A, corresponding to the fractions destroyed at the moment t

Agq(T) Aq(T)
A=A +A4,(0); S =1+ Ad(:); a(t) = Ad(:); S =1+ a(D);

o.(1t) = o(1) + a(t) o(1). 3D

The representation (31) of the structural stress corresponds to the equations

8M(t) = EMJ'I(t) + euu(t); Sn(t, to) = 81'111(‘Lv to) + SHH(tl tO)a (32)

meaning that instantaneous and delayed deformations are composed of their linear and nonlinear parts. Accord-
ing to (30) and (32), the last summand on the right side of the equality is the sum €, (t) + €,,(t, ty) and is rep-
resented in [3] as a creep deformation of the 1st kind.

Remark 6. The incorrectness of considering the nonlinear part of instantaneous deformation as creep de-
formation is also noted in [10].

In [17], the creep equation of concrete is given on the basis of nonlinear Eurocode diagrams

aC(t,1)
", (33)

£(t, to) = folo(0)] - [ filen (D]

where o(t) = f;[ey(t)] and €, (t) = f,[0(T)] represent the direct and inverse function of a nonlinear diagram
0 — &y
According to (33), in the equation of state, along with the nonlinear dependence of instantaneous defor-
mations on o(T), creep is represented as linearly dependent on o(T).
Relaxation problems

Stress relaxation in concrete under uniaxial loading

To determine the design and structural stresses for a given deformation according to equations (9)
and (26), we have the following integral equations

o(t) = E@®e(t, to) + E®) [ 6(o(m) 2L g, (34)

aCy(t,T)
at

o.(t) = E®e(t, ) + E(®) ft‘; 8(1)0,.(T) dr. (35)

Both equations (9) and (26) and equations (34) and (35) have the same structure with the same parame-
ters E (1) and C, (¢, T) in linear and nonlinear formulations. Within the framework of the concept we have adopt-
ed the nonlinearity is determined by the structure of the material and force loading, and parameters that do not

depend on these factors — E(t) and C; (¢, T) are determined by physico-chemical processes.

E(28)
) and

o(1) = E(t)e,, (1); &, (1) — elastic deformation, then according to (9) with measure (12), we obtain the equality

The scheme of definition o(t) and o.(t) is the same. Consider equation (34). Because 0(t) =

e(t) = g, (t) + ype™t fti) gy (De¥'dt; ¢ = E(28)C(w,28), (36)

that represent a linear integral equation with respect to elastic deformation €, ().
Equation (36) is reduced to the differential form [18]: multiply both parts (36) by eY¢

e¥le(t) = e, (t) + yo ftto gy (DeVd. (37)
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We differentiate all summands (37) by ¢, taking into account the known equality
t
d
2 | rodr =1,
to

¥t [£(t) + ve(t)] = e [£, (1) + ve, ()] + yope ¥ e, (0). (38)

Now, multiplying all the summands by e ™", we obtain a linear differential equation of the first order with
respect to £,(t)

&, (t) + be, (t) = £(t) +yve(t); b=v(1+ o). (39)

The function €,y (t) = Ce ™" represents the general solution of a homogeneous equation &(t) + be, (t) = 0.

-bt

We look for the general solution of equation (39) in the form &,,(t) = C(t)e and, substituting it into (39),

we get
C (e P = bC(D)e ™ + bCe™ = @o(t); @o(t) = £(t) + ye(®);
C (e b = @o(t) u C(t) = [ePt @y(t)dt = Py(t) +C.
So, the general solution of equation (39) is
g,(6) = Ce Pt + e Pty (t) = Ce ™ + D(b); @(t) = e 2t Py(0). (40)
Since according to (37) we have gy, (to) = €(ty) and g,(t) = P (ty) + Ce™ ", then
C = [e(to) — P(to)]eP™.
Thus,
g, (1) = [e(ty — P(t))]e 2t + D (v), (41)
o(t) = E(®)[e(ty — ®(ty))]e PE ) + E() D (D). (42)

In the nonlinear formulation, equation (26) is reduced to the form (39) using the above transformations
and the structural stress is determined as

os(t) = E@®)[e(to — @(t))]e ¢ + E(t)D(0). (43)

According to the stress found by this formula o7 (t) the required calculated stress o*(t)is determined
by the solution of the algebraic equation

S%e(O)]o(t) = oz (t). (44)
When the nonlinear function S°[o(t)] is taken as (29) for m = 4, according to (44) we have the equation
5
t *
v[za] +o® =oi® (45)

and the largest of the real roots is taken as an estimate of the calculated stress.
In [18], model cases of forced deformations €(t) = gy and &(t) = v(t — t,) are considered; v is the con-
stant rate of deformation.
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In work [19-20] linear integral equations (34) and (35) are solved by iteration method.
Remark 1. In (17), equation (33) is reduced to a first-order differential equation. In this case, the function
filew(T)] = o(t) according to the nonlinear Eurocode diagrams is taken as

_ a®el(O+8(D ()
o) == s on®

2

where functions a(t), 6(t), g(t) are selected empirically.
As a result, in contrast to equation (39), a rather complex nonlinear equation is obtained [17], and the
question of its solution arises.

Stress relaxation in bent reinforced concrete elements

Let's consider stress relaxation in a single reinforced concrete beam bent by a moment M(t). At a distance
h, from the neutral axis Ox

1[M(t)h
oa(t) = = [1%2 — 6, (t, hy)]. (46)
wl Jp
A : :
Here p = A—“, A, and A, are the areas of normal sections of the reinforcement and the concrete component
b
of the beam; ny = ]L, where | and ], are the moments of inertia of the concrete part of the beam and the reduced
b

normal section relative to the Ox axis; o, (t, h,) is stress in the concrete layer in contact with the reinforcement.
At the level h, according to the condition of compatibility of deformations, we obtain the equation

—~ t aCy (t,
0y (£, ha) = Gp(t, ha) + A(E) [ O(D)oy (1, he) “52 d, (47)
_ __ M®he . . ) _ M(DEg(t) _ Ea(®, B
where G, (t,h,) = TeGmem(O+D) instant elastic stress; A(t) = mem(O T m(t) () E,(t) — modulus of

elastic deformations of reinforcement; E;, (t) — modulus of elastic deformations of concrete.
For a given elastic stress 6, (t, h,) the integral equation (47) is solved by reducing to a differential equa-
tion of the form (39) relatively to £,,(T) or by simple iterations with zero approximation o0 (t, hgq) = 65(t, hy).
At a constant bending moment M we have the equation

@(t' ha) + (}\ + Y)Gb (t' ha) = Y(/F;(t, ha) (48)

According to the solution of equation (48) with an initial condition 6, (t, h,) = 6, (t, h,) for sufficiently
large t the estimate of 0, (t, hy) is

0y (0, ha) = 7~ 55(0, ha). (49)

As a result of a prolonged redistribution of stresses from concrete to reinforcement its initial stress

Ga(O) — Mhgngm

——2— increases to value
J(ungm+1)

_ 1 [M{)hg ¥ ~
0a(00) = — [F% — - 57(0,hy)|. (50)

Structural damage leads to an intensification of this process and makes a significant contribution to the as-
sessment o3 (0, h,) and o, (00).

Remark 1. In [3], a combination of the small parameter method by introducing a multiplier ¢ into the last
summand of equation (30) and the Laplace transform is used to solve relaxation problems. The structure of equa-
tion (30), together with the methods used, makes finding stresses oj,(t) and o, (t) quite a difficult task.
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Conclusion

In the long-term forecast of the safety of reinforced concrete structures and buildings, estimates of
the maximum stress values in the reinforcement are essential, because its rupture can lead to serious consequen-
ces. These estimates are obtained by solving the problem of stress relaxation in the concrete component of
the structural element, entailing an increase of stress in the reinforcement.

Based on the concept of statistical strength distribution of fractions which union forms an element of a re-
inforced concrete structure, an approach is proposed for solving relaxation problems by reducing integral equa-
tions of state to a differential form. At the same time, according to the linearity of the integral equation of state
with respect to the so-called structural stresses and the generality of the aging function for the modulus of elas-
ticity and the creep measure of concrete, a simple linear differential equation of the first order is obtained.

The approach proposed in this paper, based on the strength structure of constructive materials (concrete,
steel, wood, plastic), is significantly simpler than the known methods of stress assessment in the components of
reinforced concrete structural elements.
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