ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНОЙ ПЛОЩАДИ ОТВЕРСТИЙ ПЕРФОРАЦИИ В КОЛПАКЕ ПРИ ГИДРОУДАРЕ В НАПОРНЫХ ВОДОВОДАХ

Ф.В. Рекач, Е.К. Синиченко

Российский университет дружбы народов ул. Миклухо-Маклая, 6, Москва, Россия, 117198

Рассматривается задача определения оптимальной площади отверстий перфорации в воздушном колпаке.

Ключевые слова: воздушный колпак, перфорация, гидравлический удар.

Метод характеристик. Неустановившееся движение несжимаемой жидкости (ρ = const, выраженные через характеристики Q (расход, м³/сек) и H (напор, м) описывается уравнениями движения и неразрывности следующего вида:

$$\frac{\partial}{\partial x} \left(gFz + gFH + \frac{Q^2}{2F} \right) + \frac{\partial Q}{\partial t} + \frac{\lambda}{2DF} Q \mid Q \mid = 0,$$

$$\frac{Q}{F} \frac{\partial H}{\partial x} + \frac{\partial H}{\partial t} + \frac{c^2}{gF} \frac{\partial Q}{\partial x} = 0,$$
(1)

где g — ускорение свободного падения; z — геометрическая высота; ρ — плотность жидкости; t — время; λ — коэффициент гидравлического трения по длине; D — диаметр трубопровода; c —скорость распространения волны давления.

В результате преобразования системы (1) для прямой $(x'_t = Q/F + c)$ и обратной $(x'_t = Q/F - c)$ характеристик, получим:

$$\frac{dH}{dt} + \frac{c}{gF} \frac{dQ}{dt} + c \frac{dz}{dx} + c \frac{\lambda}{2DgF^2} Q | Q = 0,$$

$$-\frac{dH}{dt} + \frac{c}{gF} \frac{dQ}{dt} + c \frac{dz}{dx} + c \frac{\lambda}{2DgF^2} Q | Q = 0.$$
(2)

Подробно метод описан в [3]. В данной работе рассматривается регулярная прямоугольная сетка характеристик: шаг по времени Δt и координате Δx являются постоянными.

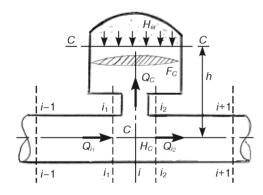
Начальные условия. В качестве начальных условий задаются параметры установившегося течения потока в гидравлической системе.

Граничные условия. На каждой границе задается по одному граничному условию H или Q (или зависимости между ними).

Узел напорной системы, в котором соединяются N ветвей. Напор и расходы в каждой n-ой ветви для момента времени j+1 определяются из условий

неразрывности потока $\sum_{n=1}^{n=N} Q_{n,\;j+1} = 0$ и равенства давлений в сечениях ветвей, примыкающих к узлу $H_{1,\;j+1} = H_{2,\;j+1} = \ldots = H_{N,\;j+1}$, если известны напоры и расходы в момент времени j.

В узле напорной системы установлена задвижка. Потери напора в задвижке определяются по формуле Вейсбаха $h_3 = \xi_3 \frac{Q^2}{2gF^2}$, где ξ_3 — коэффициент потерь напора в задвижке, зависящий от степени ее открытия.


В узле напорной системы установлен воздушно-гидравлический колпак (ВГК). Рассмотрим воздушно-гидравлический колпак, установленный в i-м сечении конструктивного участка трубопровода $(1 \le i < N)$ (рис. 1). В первом приближении находим расход Q_C , поступающий в ВГК на временном шаге j: $Q_C = Q_{i_1,j} - Q_{i_2,j}$. При политропическом законе расширения-сжатия воздуха

$$H_{C,i+1} w_{i+1}^{\chi} = H_{C,i} w_{i}^{\chi},$$
 (3)

где H_C — напор в сечении c—c; w — объем воздуха в ВГК.

Очевидно, что $w_{i+1} = w_i - Q_C \Delta t$. Согласно (3) имеем:

$$H_{C,j+1} = H_{C,j} (w_j / w_{j+1})^{\chi}.$$

Рис. 1. Воздушно-гидравлический колпак

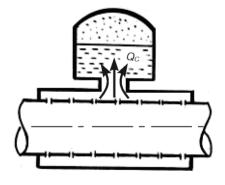


Рис. 2. Перфорационные отверстия

При прохождении жидкости через перфорационное отверстие (рис. 2), потери напора вычисляются по формуле

$$h_{\text{пер}\Phi} = \xi_{\text{пер}\Phi} \frac{v_{\text{пер}\Phi}^2}{2g},$$

где $v_{\text{пер} \phi}$ — средняя скорость движения жидкости через отверстие, $\xi_{\text{пер} \phi}$ — коэффициент потерь напора.

В случае длинного трубопровода, когда время движения жидкости в одном направлении исчисляется десятками секунд, $\xi_{\text{перф}}$ можно принять постоянной.

В справочнике И.Е. Идельчика [4] приведены $\xi_{\text{перф}}$ для различных отверстий и схем движения жидкости. Рассмотрим одну из схем, изображенную на рис. 3. Для отверстия в тонкой стенке (при толщине трубы $\delta < 3d$), числах Рейнольдса

$$m Re = \frac{v_{nep\phi}d}{\mu} \ge 10^4$$
 и $\frac{v}{v_{nep\phi}} < 0.5$, $\xi_{nep\phi}$ принимается равным 2,7. В расчетах ис-

пользуется параметр η , называемый процентом перфорирования, т.е. отношением суммарной площади отверстий к внутренней площади трубы, умноженной на 100%.

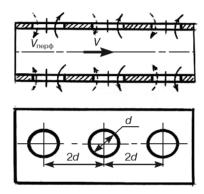


Рис. 3. Схема движения жидкости

Рассмотрим схему трубопровода, показанную на рис. 4. Цифрами обозначены: I — резервуар с постоянным давлением H_{Γ} ; 2 — трубопровод; 3 — задвижка; 4 — воздушно-гидравлический колпак (ВКГ — стабилизатор давления); 5 — узел соединения ВГК с трубопроводом.

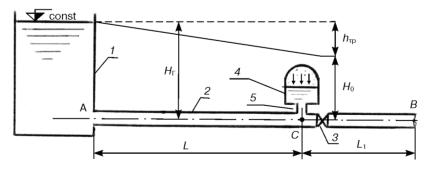


Рис. 4. Схема трубопровода

Пример. Исходные данные: L=3500 м, $L_1=2670$ м, диаметр трубопровода D=200 мм, $H_{\Gamma}=2670$ м, $h_{\rm rp}=42$ м, скорость движения жидкости при установившемся движении $v_{\nu}=1,4$ м/сек (расход $Q_{\nu}=0,044$ м³/сек), коэффициент гидравличе-

ского трения $\lambda = 0.0239$, скорость распространения волны давления c = 1000 м/сек, коэффициент потерь напора на перфорированном участке $\xi_{\text{перф}} = 2.7$.

На рисунке 5 показаны графики изменения давления в точке C в зависимости от времени: кривая I — колебания давления с колпаком, имеющим объем воздуха $w_0=0.4~\mathrm{M}^3$ без перфорации; кривая 2 — колебания давления с колпаком, имеющим объем воздуха $w_0=0.4~\mathrm{M}^3$ и процентом перфорирования $\eta=14\%$; кривая 3 — колебания давления с колпаком, имеющим объем воздуха $w_0=0.4~\mathrm{M}^3$ и процентом перфорирования $\eta=9\%$. Задвижка закрывается в момент времени t=50 сек. На рисунке 6 показан график зависимости максимального давления от процента перфорирования η для колпака, имеющего объем воздуха $w_0=0.4~\mathrm{M}^3$.

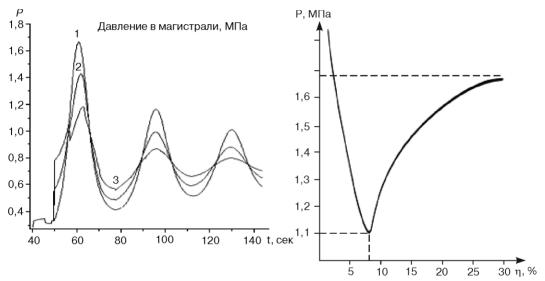


Рис. 5. Графики изменения давления

Рис. 6. График зависимости максимального давления от процента перфорирования

<u>Вывод:</u> Правильный подбор площади перфорированных отверстий может снизить гидроудар до 30% при колпаке заданного объема, что приводит к значительному экономическому эффекту.

ЛИТЕРАТУРА

- [1] Лямаев Б.Ф., Небольсин Г.П., Нелюбов В.А. Стационарные и переходные процессы в сложных гидросистемах. Ленинград: Машиностроение, 1978.
- [2] Фокс Д.А. Гидравлический анализ неустановившегося течения в трубопроводах / Пер. с англ. М.: Энергоиздат, 1981.
- [3] $Pекач \Phi.B$. Расчет колебаний в круговых цилиндрических оболочках со стабилизатором давления методом характеристик // Строительная механика строительных конструкций и сооружений. 2010. N 1. C.60—65.
- [4] Идельчик И.Е. Справочник по гидравлическим сопротивлениям. М.: Машиностроение, 1975.

DETERMINATION OF OPTIMAL PERFORATION SQUARE IN A CAP UNDER WATER HAMMER IN PRESSURE WATER LINES

F.V. Rekach, E.K. Sinichenko

Peoples' Friendship University of Russia *Mikluho-Maklaja str.*, 6, *Moscow*, *Russia*, 117198

Pressure oscillations in water lines with air cap (pressure stabilizer) under water hammer are considered. Method of characteristics is used. Problem of optimal perforation square in a cap is investigated. A problem of optimal perforation square in an air cap is considered.

Key words: air cap, perforation, water hammer.