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Stability analysis in civil engineering is traditionally centred on the stability of individual components of a structure,
rather than on the stability of the assemblage of structural components. This may be explained by the lack of adequate tools
for the stability analysis of complete structures in the past. Recently, the necessity of the development of general rational
methods of stability analysis with a model of the complex structure is widely recognized. These methods should reliably
predict the overall stability of the structure, the interaction between the components of the structure in providing restraint
against instability of individual members, and the local stability of each individual member. Development of such theories
and corresponding algorithms require a thorough investigation. The aim of this paper is to investigate the instability of
single columns without large deflections by means of the second order structural theory and to study the influence of
imperfections on the behaviour of such structural elements.
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AHanu3 ycTOWYHMBOCTH B CTPOUTEIBCTBE TPAAUIMOHHO OPHEHTHPOBAH HAa yCTOWYMBOCTH OTJAEIBHBIX KOMIIOHEHTOB
KOHCTPYKIIMH, 8 HE Ha YCTOWYMBOCTh KOHCTPYKTHBHOW CHUCTEMBI B IIEJIOM. DTO MOXET ObITh OOBSICHEHO OTCYTCTBHEM ajie-
KBaTHBIX MHCTPYMEHTOB JUISl aHAJIM3a YCTOWYMBOCTH CJIOXKHBIX CTPYKTYp B MpOIUIOM. B mocnenHee BpeMs MIMPOKO MpHU3HAHA
HEOOXOANMOCTh Pa3pabOTKH OOMIMX PAallMOHAJIBHBIX METOAOB aHAJIM3a YCTOWYMBOCTH IIPH TOMOIIM MOJIEIMPOBAHUS KOH-
CTPYKTHUBHOM CHCTEMBI. DT METOIBI JOJDKHBI HAJEKHO IPOrHO3MPOBATH OOIIYI0 YCTOWYHBOCTH CTPYKTYPHBI, B3aUMOJICH-
CTBHE MEX]y €€ 3JeMEHTaMH IpH 00eCIICUeHHN YCTOHYMBOCTH OT/EIBHBIX IEMEHTOB M YCTONYMBOCTD Ka)KAOTO OTAENb-
HOTO 3JIeMeHTa. Pa3paboTka Takux TEOpHil 1 COOTBETCTBYIOIINX AITOPUTMOB TPeOYeT TIATENbHOTrO HccnenoBanus. Llensio
HacToAmIeH pabOTHI SABJISETCS HCCIEIOBAaHUE MOTEPH YCTOWYMBOCTH OTIAEIBHO CTOSIIMX KOJOHH B OTCYTCTBHUH OOJIBIINX
MEPEMEIECHUI C MOMOILBI0 KOHCTPYKTUBHON TEOPHH BTOPOTO MOPSJAKA, a TAK)KE M3Y4YECHUE BIMSIHUS HECOBEPIICHCTB Ha
MOBEJIEHHE TAKUX KOHCTPYKTHUBHBIX JIEMEHTOB.

Keywords: K0JI0HHBI, yCTOMYHUBOCTh CTPYKTYPBI, IOTEPS] YCTOMUNBOCTH, KOHCTPYKTHUBHBIE 3JIEMEHTHI

Introduction ring capacity of a structure in compression can be li-

mited either by the strength of its material or by in-

The behaviour of structures in compression dif-
fers significantly from their behaviour in tension.
The load bearing capacity of a structure in tension is
limited by the strength of its material. The load bea-
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stability.

An equilibrium configuration of a structure is
singular if the structure can be displaced to a neigh-
bouring equilibrium configuration without change in
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the applied loading. The displacement is assumed to
be infinitesimally small. If the load on a structure that
is in a singular configuration can be reduced by dis-
placing the structure by a finite increment to a neigh-
bouring equilibrium configuration, this structure is
called unstable. If no neighbouring equilibrium con-
figuration with reduced load exists, the structure is
called stable even though the configuration is singular.

The order of a theory specifies the approximation
that is made in the formulation of the equilibrium
equations of a structure. If the equilibrium equations
are derived for the reference configuration, the formu-
lation is called a first order theory. If the equilibrium
equations are derived for the instant configuration,
the formulation is called a second order theory. The go-
verning equations of both first order and second order
theory can be either linear or nonlinear, depending on
additional assumptions made in the formulations.

First order theories are usually formulated with
assumptions that make the theory linear. The soluti-
on of the linear governing equations of first order
theory for given loads and supports leads to a unique
displacement vector. This is illustrated in this paper
for a straight bar subjected to an axial load. Because
the displacement for given loads and supports is
unique, a neighbouring equilibrium configuration with
different displacements but equal loads and supports
cannot exist. The necessary condition for instability
of the structure thus cannot be fulfilled. It is not pos-
sible to study the stability of structures with a linear
first order theory.

Second order theories can be linear or nonlinear.
Nonlinear second order theories are sometimes called
third order theories. If the displacements of a struc-
ture prior to instability are small relative to the di-
mensions of the structure, it is sufficient to analyse
their stability with a linear second order theory. Such
cases are treated in this paper. If the displacements
prior to instability are large, the structure must be
analysed with a nonlinear second order theory.

The following three cases can be distinguished in
second order theory if the governing equations are linear:

(a) The equations are homogeneous: they have
nontrivial solutions (solutions that are not null) only
if the determinant of their coefficient matrix is null.
It is illustrated herein that this approach leads to the
Euler buckling load for columns.

(b) The equations are inhomogeneous and the de-
terminant of their coefficient matrix is not equal to
null. The structure does not become unstable but un-
dergoes large displacements that limit its serviceabi-
lity. This is illustrated for columns with imperfections.

(c) The equations are inhomogeneous and the de-
terminant of their coefficient matrix is null. The struc-
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ture is not in equilibrium for general loadings, but can
be in equilibrium for specific loadings. Small geometric
imperfections or load perturbations trigger instability
under these specific loadings.

Second order theory with nonlinear governing
equations is not treated in this paper.

First Order Theory
for an Axially Loaded Bar

Figure 1 shows a straight prismatic bar with
modulus of elasticity £, whose cross-section has area
A. The bar is subjected to an axial load P at node A4.
It is supported by a roller in the axial direction at 4
and by a pin at B. The displacements and stresses of
the bar under the axial load are to be determined.

P
e HM
A y A y
a a
B B
T A A

Fig. 1. Reference bar configurations for first order theory

The equilibrium equation is formulated for the
bar in its reference configuration: the axis of the bar
is considered to be a straight line segment of length a
as in the reference configuration on the left of figu-
re 1. Let the axial force in the bar be N (tension posi-
tive). The forces applied to node A are in equilibri-
um: N=-P.

Let the displacement of point x on the axis of
the column in the direction of the x-axis be u(x).
The axial strain € on the cross-section of the column
is assumed to be constant over the cross-section and
equal to the derivative of the displacement u with
respect to x. The nonlinear terms in the strain-
displacement relationship are thus neglected. The axial
force in the bar is given by:

N:AES:AEQ. (1)
dx

The axial force N is replaced by —P and the resul-
ting differential equation is solved for the displace-
ment: u =— (P/AE) x + c.

The integration constant ¢ follows from the boun-
dary condition that # = 0 for x = a:

u=(P/AE) (a —x). (2)
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The bar fails when the stress reaches the yield
strength of its material. The example shows that linear
first order theory does not predict singular configura-
tions of a bar.

Second Order Theory
for Euler Columns

Figure 2 shows a straight prismatic bar with
modulus of elasticity £, whose cross-section has an
area A and a moment of inertia /. The bar is subjec-
ted to an axial load P at node B. It is supported by
a pin at B and by a roller in the axial direction at A4.
The displacements and stresses of the bar under
the axial load are to be determined.

X X

Fig. 2. Reference and instant bar configurations
for second order theory

The origin of the Cartesian coordinate system is
chosen at node A of the bar. The x-axis is directed from
node A4 to node B. The y-axis is rotated anti-clock-
wise through an angle of 90 degrees from the x-axis.
The z-axis is orthogonal to the x- and y-axes so that
the three axes form a right-hand system. This coordi-
nate system will also be used in the following sections.

The equilibrium equation is formulated for the bar
in its instant configuration. The axis of the bar in
the instant configuration on the right hand side of
figure 2 is a curve: the points on the axis of the bar
have displaced from their reference location by u(x)
in the direction of the x-axis and by v(x) in the direc-
tion of the y-axis.

In the general nonlinear theory, the governing
equations for the displacements u and v are coupled
because the nonlinear strains are functions of u
and v. The analysis is simplified by assuming that
the displacements are small compared to the dimen-
sions of the column and its cross-section. Separate
governing equations can then be formulated for
the two displacements.

Additional assumptions are made in the formula-
tion of the governing equation for the axial direction.
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The area of the cross-section changes under load due
to the Poisson effect. This change is not taken into
account. The axial strain ¢ is a nonlinear function of

the derivatives of displacements u and v:

du l(duj l(dvj
e=—4—| — |[+—| —|. 3)
dx 2\ dx 2\ dx

The quadratic terms on the right-hand side of (3)
are neglected so that the strain is a linear function of
the displacement. Due to these assumptions, solution (2)
for the axial displacement « remains valid for second
order theory.

Due to the transverse displacement v of the bar,
the axial load P causes a bending moment M in
the bar. The bending moment acting on a cross-
section, whose normal points in the direction of
the positive x-axis, is considered positive if its vec-
tor points in the positive direction of the z-axis.

M=—Pv. 4)

The general relationship between the bending
moment M and the displacements u and v is highly
nonlinear. It is approximated by the relationship be-
tween M and v that is formulated in first order beam
theory: M = EI (d*v/dx?).

Substituting the moment M into equation (4) yields:

EI (d*v/dx*) + Pv=0. (5)

The differential equation (5) is solved with the trigo-
nometric sine function. The integration constants are
chosen so that the boundary conditions v=0atx =0
and x = a are satisfied:

y=v, sin = ne{l2,.}. (6)

a

Substitution of v from (6) into (5) yields a linear
homogeneous equation:

2
Vo Sin@[—ﬂ(ﬂj + PJ =0. (7)
a a

Equation (7) is solved by setting either the displace-
ment or the coefficient of the displacement to null:

solution 1:
vo=0; 3
solution 2:
2
P, =(ﬂj El ©)
a

It follows from solutions (8) and (9) that the load
path of the bar contains bifurcations. The trivial solu-
tion v = 0 is valid for all values of the load P.
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The specific values of P, in (9) permit additional
equilibrium configurations in which the lateral dis-
placement v is not null. There is a bifurcation in
the load path for each value of n.

Due to geometric imperfections of the column
and perturbations of its loading, the load path in na-
ture will consist of a principal branch with v = 0 for
P < Py, and a secondary branch with displacement v
given by (6) with n = 1. The displacement amplitude
v 1s indeterminate. The load P, is called the Euler
buckling load Py for simply supported columns:

2
nEl
po= T (10)

The example shows that the approach of Euler
leads to a linear homogeneous equation for the late-
ral displacement v that predicts several singular
points (9). The point with the smallest absolute value
of the load controls the buckling of the column.

P
PC
| ¢
d primary 12 e
secondary secondary
0.8
0.6
primary
0.4
0.2
a 0
-40 -20 0 20 40

Fig. 3. Bifurcation of the load path of the bar in figure 2

Figure 3 shows the load path of the bar in figure 2.
Point a corresponds to the reference configuration.

Behaviour of
Geometrically Imperfect Columns

Assume that the axis of bar 4B in figure 2 is not
straight in its reference configuration, but has a geo-
metric imperfection given by the following curve:

g=g,sin, (11)
a

where g, — specified amplitude of the imperfection.
The equilibrium equation (4) and the governing
equation (5) are replaced by:

M=-P(g+v), (12)
d*v

E]E-I-PV:—Pg. (13)
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Fig. 4. Column with geometric imperfection

Substitution of the displacement (6) and the im-
perfection (11) into (13) yields:

2
—EI (ﬂ) v, + Py, =—Pg,. (14)
a

The governing equation remains linear, but is no
longer homogeneous. Consider the special case n = 1
and define the sum #(x) of the imperfection g(x) and
the displacement v(x). Equation (14) leads to:

t v+ 1 P
=R TE o yith s=——. (15)
8o 8o l-s P,

0.8

06

0.4

0.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 80

P
Fig. 5. Load ratio s = ry as a function of
E

t
the displacement ratio —
&o

Solution (15) shows that the load path of the co-
lumn in figure 4 does not contain a singular point.
The axis of the column displaces laterally at all load
levels. The displacement tends towards infinity as
the load on the column tends towards the Euler buck-
ling load Pj. Figure 5 shows the variation of the dis-
placement ratio #/go in (15) with the load ratio s.
The displacement ratio reaches the value 2 for a load
ratio of 0.50, the value of 5 for a load ratio of 0.80
and the value 10 for a load ratio of 0.90.
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Behaviour of Columns
with Load Perturbation

Assume that the column in figure 6 is subjected

to a sinusoidal transverse load ¢ in addition to
the axial load P:

. X
qg=4q,sm—,
a

where g¢ — amplitude of the perturbation load.

X X
Fig. 6. Column with perturbation load

The equilibrium equation (4) and the governing
equation (5) are replaced by:

2
M:_pv_qo(ﬂj sin ™. (16)
T a
2 2
Eld—f+Pv=—q0(3j sin =X, (17)
dx s a

Substitution of the displacement (6) into (17)
yields the displacement amplitude:

1 4
= [ A) im s=L as)
I—s EI\n P,

The amplitude v, of the displacement due to
the transverse load without axial load is:

g (aY
v, = E[(ch . (19)

The amplitude v, is substituted from (19) into (18):

L. (20)
v, l-s

Solution (20) shows that the load path of the co-
lumn in figure 6 does not contain a singular point.
The axis of the column displaces laterally at all load
levels. The lateral displacement tends towards infini-
ty as the load on the column tends towards the Euler
buckling load Pr. The ratio of the displacement am-
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plitude v, with axial load to the displacement ampli-
tude v, without the axial load in (20) varies with
the load ratio s like the ratio of the lateral displace-
ment v, to the amplitude g, of the geometric imper-
fection in (15). The displacement tends towards in-
finity as the load ratio s goes to 1.

Conclusions

The study of Euler columns shows that their sta-
bility can be studied with two significantly different
approaches.

(a) A singular configuration is determined for
the column without geometric imperfection and
without load perturbation. The load for which this
configuration occurs is the buckling load of the co-
lumn. The column does not displace laterally until
the buckling load is reached.

(b) The column is subjected to a geometric im-
perfection or to a perturbation load in addition to
the axial load. The column displaces laterally at all
load levels. The displacements cause moments in
the column. As the load tends towards the buckling
load determined in (a) above, the lateral displacement
tends to infinity.

Most of the building codes permit modified forms
of both of these approaches to stability theory. In ad-
dition, the codes account for the initial stresses in steel
members, yielding of the material of the column be-
fore it buckles and large displacements that limit ser-
viceability.

© Gebre T.H., Al-Sabri S.A.M., Saffia-Doe O., 2018
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