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The aim of the work is the development of numerical methods for solving waveg-
uiding problems of the theory of waveguides, as well as their implementation in the
form of software packages focused on a wide range of practical problems from the
classical issues of microwave transmission to the design of optical waveguides and
sensors. At the same time, we strive for ease of implementation of the developed
methods in computer algebra systems (Maple, Sage) or in software oriented to the
finite element method (FreeFem++). The work uses the representation of electro-
magnetic fields in a waveguide using four potentials. These potentials do not reduce
the number of sought functions, but even in the case when the dielectric permittiv-
ity and magnetic permeability are described by discontinuous functions, they turn
out to be quite smooth functions. A simple check of the operability of programs by
calculating the normal modes of a hollow waveguide is made. It is shown that the
relative error in the calculation of the first 10 normal modes does not exceed 4%.
These results indicate the efficiency of the method proposed in this article.

Key words and phrases: integrated optics, closed waveguide, computer simulation,
finite element method, four potential method

1. Introduction

The simplest way to model the phenomena of classical electrodynamics is
to use the Maxwell equations describing the electromagnetic field and their
subsequent discretization by the finite difference method. The development
of computer technology currently allows using the finite difference method
directly to discretize the Maxwell equations and conduct numerical studies
of applied electrodynamics problems considered in limited domains of space,
for example, in a resonator, prism, diffraction grating etc. One of the most
widely used methods of this kind is the finite-difference time-domain (FDTD)
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method, described in detail in a number of textbooks on modern computational
electrodynamics [1]. A specific feature of waveguide problems, e.g., the
problem of waveguide diffraction, consists in the fact that the electromagnetic
fields is to be calculated at a considerable distance from the studied object
that scatters the electromagnetic field, which leads to the need for huge
amounts of computation in the framework of the FDTD method and its
modifications. It should also be added that this method introduces “numerical
dispersion”, which leads to errors in determining the phase velocity, and
“numerical anisotropy”, in which the wave numbers of waves propagating in
different directions in an isotropic medium differ [2], [3].

The study of waveguide problems in the full electromagnetic formulation
was initiated by the works of A.N. Tikhonov, A.A. Samarsky, P.E. Kras-
nushkin, and A.G. Sveshnikov, carried out in the second half of the last
century. A.N. Tikhonov and A.A. Samarsky investigated the propagation
of electromagnetic waves along a cylinder with a constant simply connected
cross section, having perfectly conducting walls and filled with a homoge-
neous substance. In this work, several fundamental theorems were proved
that characterize an arbitrary electromagnetic field in such a waveguide, e.g.,
the theorem on the field decomposition into transverse electric and transverse
magnetic (TE and TM) fields and the theorem on the decomposition of a field
into normal modes. These results allowed P.E. Krasnushkin to introduce the
concept of a normal waveguide wave or mode, and A.G. Sveshnikov [4], [5] to
introduce partial conditions of radiation and strictly mathematically pose the
problem of diffraction and normal waves in a waveguide.
It should be noted that setting perfect conduction boundary conditions

does not limit the scope of the developed methods to the research and design
of microwave transmission channels only, since the closed waveguide model is
also used to simulate open waveguide systems [6], [7]. When modeling the
propagation of guided modes along an open waveguide in the optical range, it
is natural to assume that the field at a distance of several wavelengths from
the boundary of such a waveguide is zero. Therefore, by placing an open
waveguide in a box with perfectly conducting walls, we obtain an approximate
model of an open waveguide, as A.G. Sveshnikov first pointed out. The
model “open optical waveguide in a box” is a correct mathematical model
describing the propagation of waveguide modes, and at the moment it is
a correct model describing waveguide diffraction in open optical systems [7].
The limits of applicability of this model can be described quantitatively by
comparing the results obtained with different distances of the box walls from
the boundary of the waveguide. An obvious drawback of the “waveguide in
a box” model is the overestimation of energy flow channeled in the direction
of the waveguide axis. This is not essential for modeling the propagation of
guided modes, but it is important, e.g., for problems of energy flowing out of
such a waveguide through an open end.
The main difficulty in the development of the theory of waveguides was the

spectral problem for waveguides filled with optically inhomogeneous matter.
As far back as the middle of the last century, waveguides with cores became
actively used in practice, i.e., cylinders, the filling of which varies across the
section and remains constant along the axis. Below we will call this structure
a regular waveguide filled with optically inhomogeneous material. Modern
technologies in the field of creating new materials and metamaterials are able
to give waveguides with almost any distribution of dielectric constant into
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the hands of practitioners. Moreover, they are increasingly trying to use
fractal inserts [8], which means that the scalar model, with its assumption
that the dielectric constant changes are small and slow, is becoming less and
less adequate. The same conclusion can be made with respect to the study of
multicore waveguides, the study of which is focused on providing 5G networks
[9]–[11].
The method, which goes back to the works of A.N. Tikhonov and

A.A. Samarsky, was based on the possibility of introducing two potentials for
a hollow waveguide, which are now interpreted as the electric and magnetic
Borgnis functions. This circumstance fundamentally distinguishes the compu-
tational complexity of the spectral problems for hollow waveguides and for
waveguides filled with optically inhomogeneous matter. In the first case, the
problems are scalar and well-developed methods are applicable to them, which
are equally suitable for problems of acoustics and quantum mechanics. In the
case of a waveguide filled with an inhomogeneous optical medium, one has to
solve the problem numerically in full vector formulation. A generalization of
the classical problems of the mathematical theory of waveguides, particularly,
the spectral and diffraction problems, to the case of waveguides with variable
permittivity is much more complicated and still not fully explored.
Turning to a discussion of the results obtained in studying the spectral

characteristics of waveguides filled with inhomogeneous matter, we agree to
work in a Cartesian coordinate system whose axis 𝑂𝑧 coincides with the axis
of the waveguide. The problem of finding the normal modes of a regular
waveguide filled with optically inhomogeneous matter is as follows. Given are:

— the waveguide cross section 𝑆,
— the distribution of 𝜀 and 𝜇 over the cross section 𝑆; here and below we
assume these functions to take only positive values,

— the frequency 𝜔, and therefore, the wave number 𝑘 = 𝜔/𝑐.
It is required to find all values of the parameter 𝛽 ∈ ℂ, for which the

Maxwell equations have a nontrivial solution of the form

⃗𝐸(𝑥, 𝑦)𝑒𝑖𝑘𝛽𝑧−𝑖𝜔𝑡,
𝐻⃗(𝑥, 𝑦)𝑒𝑖𝑘𝛽𝑧−𝑖𝜔𝑡,

(1)

satisfying the conditions of ideal conductivity of the waveguide walls and the
joining conditions at the discontinuities of the permittivity and permeability.
The parameter 𝛽 is called the phase constant. Traditionally, this problem is
formulated as an eigenvalue problem with respect to three field components.
The choice of these three components from the set of six components of the

vectors ⃗𝐸 and 𝐻⃗ can be different, which leads to different formulations of
the problem. A.N. Bogolyubov and T.V. Edakina [6] and Frank Schmidt

[12], [13] used the components of the vector 𝐻⃗, E. Lezar and D. Davidson
[14] working in the framework of the FEniCS Project used the components

of the vector ⃗𝐸, A. L. Delitsyn [15]–[17] used the components 𝐻𝑥, 𝐻𝑦, 𝐸𝑧.
Normal modes of an axially symmetric waveguide with a dielectric core were
considered by N.A. Novoselova, S. B. Raevsky and A.A. Titarenko [18], as
well as by A. L. Delitsyn and S. I. Kruglov.
First, for any of the above approaches, we obtain spectral problems for non-

self-adjoint operators in function spaces, which are constructed by analogy
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with Sobolev spaces, but are much less studied. This greatly complicates the
proof of the theorem on the expansion of a monochromatic wave in a waveguide
in normal modes, without which it is impossible to proceed to setting the
partial radiation conditions in the waveguide diffraction problem [15], [19],
[20]. For a hollow waveguide, this theorem was proved by A.N. Tikhonov
and A.A. Samarsky as a consequence of Steklov’s theorem, while in the
case of a waveguide filled with inhomogeneous medium, one has to use the
general Keldysh theorem on the completeness of the system of eigenvectors
and adjoined vectors [16], [17], [21]–[23]. At present, the completeness of the
system of principal vectors of a waveguide has been proved, however, the
question about the possibility to use this system as a basis has already been
answered in the affirmative sense only for the case of a circular waveguide,
the filling of which depends only on the radius [24], [25].
Numerous questions about the distribution of eigenvalues, the conditions

for the existence of multiple eigenvalues have remained unexplored due to
the difficulty of the spectral theory for non-self-adjoint operators. Are there
cases in which the phase constant 𝛽 of normal modes has both the real and
imaginary parts? Are there cases in which adjoined normal modes arise?
What is their physical meaning? Numerical experiments do not give an
unambiguous answer to these questions. For example, in our experiments
performed using the software package presented at the annual Saratov Fall
Meeting International Conference in 2017, higher modes appeared to possess
complex phase constants. However, numerical methods always calculate higher
modes worse than the lower ones, so in those experiments it was not clear
whether we discovered a new physical effect, or encountered a computational
artifact.
Second, the spectral problem has a zero eigenvalue of infinite multiplicity,

because of which, when solving the eigenvalue problem numerically, ficti-
tious (“ghost”) modes arise [6], [26]. At the end of their review of the current
advances in solving the spectral problem of the waveguide theory, A.N. Bo-
golyubov and T.V. Edakina [6] wrote:

“... The appearance of false modes is perhaps the most difficult issue
in solving waveguide problems using finite elements or finite differ-
ences in a variational formulation, and, in our opinion, researchers
will turn to it more than once in search of the simplest and most
economical ways to identify the waves actually propagating in the
waveguide.”

Currently, there are two ways to deal with ghosts: the use of penalties [6] or
the use of mixed finite elements [14], [27]. The main drawback of the penalty
method is that although an increase in the parameter characterizing the size
of the penalty leads to a decrease in the number of fictitious solutions, the
accuracy of calculating the characteristics of true modes decreases.
Therefore, since the mid-1990s, the mixed finite element method has been

regarded as the only reliable means of combating ghosts [26]. Test examples
showed the reliability of this technique, however, in our opinion, the issues
of its substantiation as applied to waveguide problems were not given due
attention. It should be noted that this issue closely relates to the use of FEM,
and not, e.g., the incomplete Galerkin method.

Third, the conditions on the walls of the waveguide ⃗𝐸 ×𝑛⃗ = ⃗0, 𝐻⃗ ⋅ 𝑛⃗ = 0 are
not classical, and FEA Softwares have no built-in elements for such conditions.
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It is not clear how precisely these conditions are approximated in published
papers. In papers on optical waveguides [6], [12], [13] the authors assume that
the field is zero on the walls. From a physical point of view, this assumption is
very reasonable, but unfortunately it leads to a conflict with Müller’s theorem
on a field equal to zero on an element of an analytic surface [28]. This conflict
is removed further, at the stage of introducing penalties, and therefore, the
result is a correct mathematical problem.

Fourth, in the examples most interesting for applications, the dielectric
constant has discontinuities at the interface of different media filling the
waveguide. At these interfaces, the electromagnetic fields suffer discontinuities,
because of which a necessity arises to approximate discontinuous functions
using the FEM. The results of numerical experiments convincingly support
the legitimacy of this operation; however, for this situation, theoretically, the
effect of discontinuities on convergence has not been studied. The study of
this issue is substantially complicated by the fact that the approximation is
carried out in non-standard, poorly studied functional spaces. For example,
in the works of A.L. Delitsyn mentioned above, embedding theorems were
proved, which for Sobolev spaces were established as early as at the beginning
of the last century.

Finally, the achieved accuracy of the calculations is not high. E. Lezar
and D. Davidson compared their results with the results obtained earlier by
Jin [29] in the same way for the same waveguide, namely, the rectangular
half-filled waveguide. Only the first branch of the dispersion curve coincided
with graphic precision, while the Jin’s next three branches merged into two.

In our works [30], [31], a previously unknown representation of electromag-
netic fields in a waveguide using four potentials was proposed.

These potentials do not reduce the number of functions to be determined,
i.e., they do not “integrate” Maxwell equations. But even in the case when
the permittivity and permeability are described by discontinuous functions,
they turn out to be quite smooth functions. The Maple system has developed
a symbolic-numerical method for finding normal modes based on a combination
of this representation of the field and the incomplete Galerkin method [30],
[32], [33]. Comparison of the calculation results with the results obtained
using the mixed finite element method was significantly complicated by the
lack of a public version of the finite element implementation. The program,
written by Lazar and Davidson [14] as part of the FEniCS Project, was only
partially published by the authors and has not been updated since 2012, in
particular, important changes in the syntax of the project were not taken into
account. Y.Yu. Kuziv resumed this program and performed the necessary
calculations for comparison, which will be presented in this article.

The ultimate goal of our research is to create numerical methods for solving
the major problems of the theory of waveguides and to implement them
as software packages focused on a wide range of practical problems, from
classical issues of microwave transmission to the design of optical waveguides
and sensors. At the same time, we strive for ease of implementation of the
developed methods in computer algebra systems (Maple, Sage) or in software
oriented at the finite element method (FreeFem ++).

We will not describe finite element methods for solving the spectral problem,
since they are described in detail in [14]. As to our method, we intend to
dwell on it in more detail.
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2. Method of four potentials

Let 𝑆 be a singly connected waveguide cross section, 𝑍 be a segment of
the waveguide axis, 𝑇 be the considered time interval, and 𝜖, 𝜇 — piecewise
continuous functions on 𝑆, taking only positive values. The electromagnetic
field in the closed waveguide 𝑆 × 𝑍 × 𝑇 with the filling 𝜖, 𝜇 will be understood
as vector fields ⃗𝐸, 𝐻⃗, whose components are defined on

(𝑆 − Γ) × 𝑍 × 𝑇 , (2)

under the condition that the sections of ⃗𝐸, 𝐻⃗ and their partial derivatives in
𝑧 и 𝑡 on 𝑆 for any 𝑧 and 𝑡 are piecewise smooth functions that satisfy

1) the Maxwell equations

⎧{{{
⎨{{{⎩

rot ⃗𝐸 = −𝜕𝑡𝜇𝐻⃗,
rot 𝐻⃗ = +𝜕𝑡𝜖 ⃗𝐸,
div 𝜖 ⃗𝐸 = 0,
div𝜇𝐻⃗ = 0,

(3)

inside the waveguide 𝑆 × 𝑍 × 𝑇,
2) the conditions of perfect conductivity of the waveguide walls

⃗𝐸 × 𝑛⃗ = 0,
𝐻⃗ ⋅ 𝑛⃗ = 0

(4)

at regular points of the boundary 𝜕𝑆 × 𝑍 × 𝑇,
3) the joining conditions

⎧{
⎨{⎩

[ ⃗𝐸 × 𝑛⃗] = ⃗0, [𝜖 ⃗𝐸 ⋅ 𝑛⃗] = 0,
[𝐻⃗ × 𝑛⃗] = ⃗0, [𝜇𝐻⃗ ⋅ 𝑛⃗] = 0

(5)

at regular points of the boundary where the filling has a discontinuity
Γ × 𝑍 × 𝑇.

In practice, it is important to find at least approximately such a field that
satisfies some additional conditions. For example, the spectral problem of the
theory of waveguides formulated above consists in finding fields that have all
3 of these properties, and in addition to them having the form (1). In this
paper, we focus on the calculation of such fields, leaving aside the theoretical
questions of their existence.

Assume for brevity that

⃗𝐴⟂ = (𝐴𝑥, 𝐴𝑦, 0)𝑇,

∇ = (𝜕𝑥, 𝜕𝑦, 0)𝑇,
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and
∇′ = (−𝜕𝑦, 𝜕𝑥, 0)𝑇.

According to theorem 2 in [31], the transverse components of such field can
be always presented in terms of four scalar potentials in the following form

⃗𝐸⟂ = ∇𝑢𝑒 + 1
𝜖
∇′𝑣𝑒,

𝐻⃗⟂ = ∇𝑣ℎ + 1
𝜇

∇′𝑢ℎ.
(6)

In this case the potentials 𝑢𝑒 и 𝑢ℎ are solutions of the Dirichlet problems

{
Δ𝜖𝑢𝑒 = −𝜖𝜕𝑧𝐸𝑧,
𝑢𝑒|𝜕𝑆 = 0, (7)

and

{
Δ 1

𝜇
𝑢ℎ = +𝜖𝜕𝑡𝐸𝑧,

𝑢ℎ|𝜕𝑆 = 0,
(8)

while the potentials 𝑣𝑒 и 𝑣ℎ are solutions of the Neumann problems

⎧{
⎨{⎩

Δ1
𝜖
𝑣𝑒 = −𝜇𝜕𝑡𝐻𝑧,

𝜕𝑣𝑒
𝜕𝑛

∣
𝜕𝑆

= 0,
(9)

and
⎧{
⎨{⎩

Δ𝜇𝑣ℎ = −𝜇𝜕𝑧𝐻𝑧,
𝜕𝑣ℎ
𝜕𝑛

∣
𝜕𝑆

= 0. (10)

Here and below for the Laplace operator div(𝑘∇𝑢) we use the notation
Δ𝑘𝑢. The existence of at least generalised solutions of the Dirichlet problems
is apparent, for the Neumann problems we have checked the fulfilment of the
conditions for the existence of a solution [31]. For simplicity, let us assume
that these solutions are classical, which can be proved under certain additional
assumptions of the smoothness of boundary 𝑆 and the considered fields based
on the Weyl lemma [34].

Remark 1. In a hollow waveguide the potentials 𝑢𝑒, 𝑢ℎ, as well as 𝑣𝑒, 𝑣ℎ
are linearly expressed via the Borgnis functions, so that this representation
can be considered as the development of Borgnis’ ideas.

It should be emphasized that, due to condition 2, the components of
electromagnetic fields suffer discontinuities at the interfaces, and the factors
in the formulas (6) are specially selected in [31] so that the potentials are
smooth functions. In fact, Eq. (6) allows passing from discontinuous variables
to smooth ones. This is very convenient from the point of view of the further
application of numerical methods, since not all approximation methods are
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applicable to discontinuous functions, and if applicable, the convergence in
the discontinuous case is noticeably worse.

Remark 2. Note that any field of the form (6) satisfies theorem 1 of [31]
at the interface between media, therefore, the appropriate conditions are
automatically fulfilled below.

The method of four potentials consists of a transition from field components
to four potentials. Let us apply it to the spectral problem.

3. Numerical example: normal modes of a hollow
waveguide

The simplest test of the operability of programs for calculating normal
modes is to calculate the normal modes of a hollow waveguide, studied
analytically.
Consider a hollow waveguide with the side of a square cross section 𝑙 =

3.5 ⋅ 10−6 [m] without filling, i.e., 𝜖 = 𝜇 = 1. The normal modes, i.e., the
solutions of the Maxwell equations, have the form 𝑒𝑖𝛾𝑧−𝑖𝜔𝑡. For brevity let us
denote 𝑘 = 2𝜋𝜈/𝑐 and 𝛽 = 𝛾/𝑘, we will carry out a numerical calculation for
𝜈 = 1014 [Hz]. In a hollow waveguide 𝛾2 = 𝑘2 − 𝜆, where 𝜆 is an eigenvalue
of Dirichlet or Neumann problem on the section. For the Dirichlet problem

𝜆 = 𝜋2

𝑙2
(𝑛2 + 𝑚2), 𝑛, 𝑚 = 1, 2, … ; (11)

for the Neumann problem

𝜆 = 𝜋2

𝑙2
(𝑛2 + 𝑚2), 𝑛, 𝑚 = 0, 1, 2, … ; (12)

the zero eigenvalue corresponding to constant eigenfunction and zero field; it
should be removed from the list of normal modes.
For comparison, the relative error is presented

𝛿𝑗 = ∣
̂𝛽𝑗 − 𝛽𝑗

𝛽𝑗
∣ , (13)

for the calculation of the first 10 modes. Here 𝛽𝑗 is the phase retardation

coefficient calculated using an analytical formula, and ̂𝛽𝑗 is the same quantity
found numerically.
Figure 1 presents the errors of mode calculation using finite elements –

FEM – with 8 points along each side of the square. The error, as expected,
grows with the mode number 𝑗. For the first two phase retardation coefficients
relative error is less than 10−6, for the next four coefficients the relative error
is less than 10−4 and for the last four calculated phase retardation coefficients
the relative error is less than 4 × 10−3. The error growth is non-monotonic as
follows from the Figure 1.
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Figure 1. Relative error in the calculation of the first 10 normal modes: a comparison of

finite element method (FEM) and analytical solution

Figure 2 presents the errors of mode calculation using four potential method
and incomplete Galerkin method (IGM). The sum, which represent the
approximate solution in IGM, consists of 1022 terms. The error growth
is non-monotonic with the mode number 𝑗, the relative error is less than
1.1 × 10−5 for the first ten calculated phase retardation coefficients.

Figure 2. Relative error in the calculation of the first 10 normal modes: a comparison of

incomplete Galerkin method (IGM) and analytical solution

The performed numerical experiments show that both methods of cal-
culating normal modes with such a choice of parameters yield reasonable
results.

4. Filled waveguide

Now let us consider a square waveguide (𝜖1 = 1, 𝜇1 = 1) of width 𝑙 =
3.5 ⋅ 10−6 [m] with four square cores of width 𝑑 = 10−6[m] with 𝜖2 = 2, 𝜇2 = 1
inside, as shown in Figure 3.
The phase retardation coefficients for such a structure cannot be calculated

analytically, so we can only compare the phase retardation coefficients calcu-
lated numerically using FEM and IGM. For comparison, a relative error Δ𝑗
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is presented in Figure 4, where Δ𝑗 is defined as presented below

Δ𝑗 = ∣
𝛽𝐹𝐸𝑀

𝑗 − 𝛽𝐼𝐺𝑀
𝑗

𝛽𝐼𝐺𝑀
𝑗

∣ (14)

in the calculation of the first 10 modes using these methods. Here 𝛽𝐹𝐸𝑀
𝑗 is

the phase retardation coefficient calculated by FEM, and 𝛽𝐼𝐺𝑀
𝑗 is the same

quantity calculated by IGM. The relative error grows with increasing mode
number 𝑗 and does not exceed the value 4 × 10−2 (see Figure 4).

Figure 3. Cross section of a waveguide with 4 cores

Figure 4. Relative error of calculating the first 10 normal modes: a comparison of the results

obtained by FEM and IGM

5. Conclusion

The results obtained demonstrate the coincidence of the numerical results
obtained by two different approaches. The first approach is based on the use
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of the FEniCS Project libraries and on the use of FEM for an approximate
solution of the problem of finding normal modes [14]. The second approach is
based on the application of the recently proposed four potential method [30].
Numerical calculation is performed using the incomplete Galerkin method [33].
Both methods are tested on a waveguide structure corresponding to a hollow

waveguide, for which phase retardation coefficients are analytically known.
The accuracy obtained by both methods is not high, but sufficient for technical
calculations. Using an example of a four-core waveguide, for which the phase
retardation coefficients are not analytically known, both methods also give
quite similar results, differing by less than 4%.
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Вычисление нормальных мод закрытых волноводов

М. Д. Малых1, Д. В. Диваков1, А. А. Егоров2, Я. Ю. Кузив1

1Кафедра прикладной информатики и теории вероятностей
Российский университет дружбы народов

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия
2Институт общей физики имени А.М. Прохорова РАН

ул. Вавилова, д. 38, Москва, 119991, Россия

Целью работы является разработка и создание численных методов решения
некоторых задач теории волноводов, а также их реализация в виде комплек-
сов программ, ориентированных на широкий круг практических проблем от
классических вопросов передачи СВЧ излучения до проектирования оптиче-
ских волноводов и датчиков. При этом мы стремимся к простоте реализации
разрабатываемых методов в системах компьютерной алгебры (Maple, Sage) или
в программном обеспечении, ориентированном на метод конечных элементов
(FreeFem++). В работе использовано представление электромагнитных полей
в волноводе при помощи четырёх потенциалов. Эти потенциалы не уменьшают
число искомых функций, но даже в том случае, когда диэлектрическая и маг-
нитная проницаемости описываются разрывными функциями, они оказываются
достаточно гладкими функциями. Сделана простейшая проверка работоспособ-
ности программ путём вычисления нормальных мод полого волновода. Показано,
что относительная ошибка в вычислении первых 10 нормальных мод не превы-
шает 4%. Эти результаты свидетельствуют о работоспособности предложенного
в настоящей статье метода.

Ключевые слова: интегральная оптика, закрытый волновод, компьютер-
ное моделирование, метод конечных элементов, метод четырёх потенциалов


