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This paper presents an investigation of modeling and solving system of differential equa-
tions in the study of mechanical systems with holonomic constraints. A method is developed
for constracting equation of motion for mechanical system with constraints. A technique is
developed how to approximate the solution of the problem that is obtained from modeling of
kinematic constraint equation which is stable. A perturbation analysis shows that velocity
stabilization is the most efficient projection with regard to improvement of the numerical in-
tegration. How frequently the numerical solution of the ordinary differential equation should
be stabilized is discussed. A procedure is indicated to get approximate solution when the
systems of differential equations can’t be solved analytically. A new approach is applied for
constructing and stabilyzing Runge-Kutta numerical methods. The Runge-Kutta numerical
methods are reformulated in a new approach. Not only the technique of formulation but also
the test developed for its stability is new.Finally an example is presented not only to demon-
strate how the stability of the solution depends on the variation of the factor but also how
to find an approximate solution of the problem using numerical integration.
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1. Introduction

The theory of mechanical systems with kinematic constraints goes back to the
last century, with important contributions by Herzt (1894), Ferrers (1871), Neumann
(1888), Vierkandt (1892), Chaplygin (1897). Several recent papers [1] show a strong
renewal of interest in that theory, in relation with new developments in control theory.

In the construction of equations of motion, one can treat the constraints imposed on
a mechanical system as servo-constraints, and the constraint reactions can be treated
as the corresponding controls. Then the construction of equations of motion can be
reduced to finding expressions for the constraint reactions on the right-hand sides
guaranteeing that the solutions of the system satisfy the constraint equations with
the desired accuracy [2]. This is, in a sense, the constraint stabilization problem, and
to solve it, one should take account of not only the deviations from the constraint
equations but also their derivatives [2]. It turns out that the constraint stabilization
is possible only if the constraint equations are particular integrals of the equations
of motion of the mechanical system and the differential equations for the deviations
from the constraint equations have an asymptotically stable trivial solution [2]. Still
this does not guarantee that the deviations from the constraint equations remain
bounded in the numerical solution of the differential-algebraic equations comprised
by the equations of motion and the constraint equations. In the present paper, to
estimate the deviations from the constraint equations, we introduce the equations of
constraints and the equations of constraint perturbations and define the notions of
stable and asymptotically stable constraints.
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2. Modeling of Kinematic Mechanical System

Kinematic state of mechanical system can be described by ordinary differential
equations:

y=v(y,t), where y(to)=12", ye&R" (1)
Assume the constraints to be imposed:
fly,t) =0, where fE€R™, m<n, f(y°t)=0. (2)

The vector on the right hand side of equation (1) should be taken so that for all ¢ > ¢y
and ¢ = ¢(t) satisfying equation (2) it also satisfies the following equality:

fyv + ft = O) (3)
where f, = (fij), fr = (fir), fij = ggj, 1=1,2,...,m,j=1,2,...,n. The solution of
equation (3) can be constructed directly if some unknowns v? = (vy 41, - .., vy,) given
arbitrary and determine the rest v* = (vy,...,v,,) using

fylv1 = _(fy2172 + ft)7

where,  fy1 = (fix), foo=(fa), .k=1,....m, l=m+1,...,n
Then the system in equation (1) will have the form [2]:

it == 1 (fp® + ), 9P =0y 1), (4)

To use the above system (4), it is important to require the validity of initial con-
dition (2) and the relation det(fy1) # 0. In some cases, this condition is satisfied.
Unfortunately, the requirement det(f,1) # 0 is not the only requirement to use the
method mentioned above for the construction of differential equations. In the ap-
plication of this method one should have in mind the possibility of integration error
accumulation for equation (4), which in the course of time, leads to the destruction of
the constraint equation (2). Consequently, equation (1) should be constructed so as
to ensure that the solution y = y(t) satisfying the initial conditions y(tq) = y° with

£y t0)|| <e (5)
deviates from constraint equation (2) in the course of numerical integration by a

quantity of the order of e:
1f(y, D)l <e. (6)

To define the right-hand side v(y, t) of equation (1) instead of equation (3), one uses

the relation [2]
fyv + ft = a, (7)

where a = a(f,y,t), a(0,y,t) = 0. It follows from (7) that the vector v should be
determined as a solution of m linear equations with n unknowns:

Av =b, (8)

where A = f,, b = a — f;.The structure of the general solution of equation (8) is
described by the following theorem [2]:

Theorem 1. The set of all solutions of the linear systems (6), in which the matriz
A has rank r is determined by the relation

v=—c[AC]+ ATb = cv™ + ", 9)
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where ¢ is an arbitrary scalar quantity, [AC) = [A1, ..., AmCimi1, ..., Cn_1] is vector
product,A; = (A;;), and arbitrary C. = (Cr;), T=m+1,...,n—1, j=1,...,n,
At = AT(AAT)! and the component [AC]; of a determinant is

[ (5]‘ (Sjg cee 6]- T
A Ao .. A
° ‘e e . O . . k )
[AC]j =\ A Ao .. Amn |, where 0j; = {1’ Zf] 7_é k,
Cm-‘,-l’l Cm+172 . CTVL-i-l,n 9 ij - .
_Cn—l,l C'n—1,2 ce Cn—l,n_

Example 1. A slider crank mechanism is given in the figure below.

'
¥

Figure 1. Slider crank mechanism

The translational displacement x of a unit mass and the angular displacement 6
of crank are joined by the rod [. Then the constraint equation will be

fy) =rsinf; —Isinf, =0

and Av = b, where A= f,, b=a=kf, as f; = 0, the solution of this can be put as

v=c" +0", v =1[f,], v =/fla
where
v] = —lcosby, wvj = —rcosb,
L, krcosfy(rsinf; —lsinfs) L, —klcosby(rsinf; — lsinby)
Ul == =

(rcosbq)? 4 (Icosby)? ' vz = (rcosf1)? + (lcosby)?
where k£ > 0. Then

kr cos 6y (rsinf; — [sinfsy)
(rcos1)? + (I cos )2

v; = cv] +v]{ = —clcosby +

klcosBa(rsinfy — lsin )
(rcosf1)? + (I cosby)?

Taking ¢ =1, r = 1,1 = 2 and the value of k to be choosen depending on the stability
of the solution.

Vg = cvy + vy = —crcosby —

k cos 61 (sinf; — 2sinfy)
(cosf1)? + (2cosbs)?

2k cos O (sin 1 — 2 sin 05)
(cosB1)? + (2cos bs)?

v; = —2cos s+ vg = —cos b —
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3. An Approximate Solution of Differential Equations

Many systems involving differential equations are so complex, or the systems that
they describe are so large, that a purely mathematical analysis is not possible. It is
in these complex systems where computer simulations and numerical approximations
are useful [3].

Most often, systems of differential equations can not be solved analytically. Algo-
rithms based on numerical methods are therefore needed. By numerical integration,
we mean to compute, from y" (the initial condition), each successive result y*, 2, 32,

. that satisfy equation

% =v(y,t). (10)

An algorithm is thus a program that computes as precisely as possible y"*! from
g where, g = y(tn), tnsr = tn +7, and § = ¢ [£,C] + £ (K f — fo).

Of course, y can be a vector and the equations can be non-linear differential equa-
tions [3].

3.1. Euler’s method

Let us assume that the initial conditions ¢y and y(to) be known for the solution
of the equation (10). Setting a = K f and using the right side of (10) construct the

equation
n

Y=yt Tyt (11)
For a differential equation the following assertion holds [2]:

Theorem 2. There are constants a, 71,¢ and matriz K (y,t), which if
1) || £(5°, t0)|| <,
2) T <11, and for ally = y",t = t,,n=0,1,... the inequality is fulfilled
3) I +7K(y, 1) < a < 1,
9 FFP) < -ak
where f@ = vayTyv + 2fyt + fu, then the solution of the difference equation (11)
will satisfy the condition || f(y™, tn)|| < e, for anyn=1,2,....

The above theorem helps us to estimate the value of the constant matrix K in our
examplel, so that the solution is stable.

Example 2. Consider the problem what we have constructed in Ex. 1, that is,
9.1 = 1}1((91, 92), 92 = U2(917 92)7

krcosfy(rsinfy — lsin6s)
(rcosr)? + (I cosbs)?

vy = cv] +v] = —clcosby +

Kl cos O3(rsinfy — I sin 0)

= cvy 5 = — 0, — 12
V2 = Uy reosty (rcosf1)? + (I cosfz)? (12)

System (12) has a particular solution
f(91, 92) = rsin91 — lSiIlHQ =0 (13)

07+ and 05! be calculated as 071 = 07 +7op, 05T = 05410l 69 =0, and 69 = 0.
From (13) 1t follows that condltlon 1. holds clearly: |f(0,0)] = 0 < e. Condition 3
imposes a limit and k: |1+ 7k| < a < 1, that is,

1—- 1
a<k<a+
T T

(14)
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To check condition 4 for this problem, consider the right hand side of (12) and
rewrite it as |rsinf; — Isinfs| < &, (rcosfy)?+ (I cosB2)? > 1% cos? Oy > 1> —1? sin? 01 —
2r [sinf| —e? > 1?2 —r? — 2re; —e? = 1% — (r +&1)?. Then it follows:

kre kle

Lt oy = W s = Wa.
|U1| ot (T+€1)2 |1}2| et [2 (T +€1)2 2

o? o?
So that f?) = aT)]ch% + a—egv%,

62 82 82
’f@)" 2*39120 v2| S aaﬁ Y +‘aa£ v2| =
o°f f
‘892 } |+‘892 | | Wi+ Wy =

Conditions 2 and 4 take the form:7 < 71, 72F < 2(1—a)e. Takingr = 1,1 =2,¢c =
1 in equation (12) and € = &1 = 1074 setting (approx1mate Values) Wi = 3, W2 =
2. Then F' =17, correspondlngly condition 4 takes the form 17 x 10*72 < 2(1 — a) and

again let us assume 7, = 1073, & < 0.9. Taking o = 0.9, we obtain a restrlctlon for k:
100 < k < 1900.

3.2. Runge-Kutta Method

Runge-Kutta methods introduce values between ¢, and t¢,11, and evaluate v at
these intermediate points [4]. The general Runge-Kutta method is defined by

Yyt =y + Th(t,, y", T), (15)

where h(t,,y",7) = Zf” ¢k, with

r—1
ki =ov(tn,y"), k.=v (tn+Tar,yn+TZstks> ) (16)
s=1
and a, = ZZ i b.s, forr =2,3,..., R. These constants, ¢,, a, and b,, are determined

to ensure the highest order accuracy for the method. To establish the order of accuracy,
consider the Taylor series expansion of y(t,,+1)

2

T
yn+1 :yn+7yn+7

2y"+...:y”+7<y”+zgj"+...>.

2

From this we may recall that the Taylor’s series method of order p for h in (15) can
be written with

T 7p—1
Wty 7) = hp(tn, y™, 7) = v(tn, y”)+§v(1)(tmy”)—|—. . .+7v(”‘”(tn,y”), (17)

where v() = %v(tn,y”), i=1,2,...,(p—1). We further expand ko, k3 and k4 upto
order 3 and represnt the summary as follows:

]fg = U(tn + Tag,y” -+ Tazkl),

2 -3
ko = 0" + Tas F™ + —aQG” —

5 asH™ + T4 RM, (18)
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where v" = v(ty, y"), F" = f + vnfél and

G" = fii + 20" fi;, + (v™)? gy H'= (v™)? vy T 3(v™)? gyt T 3V fowe + fite

ks = v(t, + Tas,y" + 7(bsik1 + bsaka)), a3 = bsi + bsa,

2
k3 =" + TCLan + %(CL%G” + 2a2b32f;fF")+

73

+ g(aan + 6a2b32a3[”F" + 3a3632f£G”) + T4R54, (19)

n n fn n
where I" = v" f7 + [y

ks = v(tn + Tas,y" + 7(barks + basks + basks)), as = ba1r + baz + bus,

2 3

T T
k4 =" + Ta4F" + —aiG” + 72(a2b42 + a3b43)f;‘F" + —

5 5 (a3baz + a3bss) f7 G"+

2
+ 7_2a2b32(f;z)2Fn + 7'3(a2b42a4 + a3b43a4)I"F" + %GZHTL + T4R];4. (20)

using equation (15) and Regrouping similar terms we get

h(tn,y™,7) = (c1 + ca + c3 + c4)v™ + 7(c2a2 + c3as + cqa4) F"+
2

T
+ ?(@%CQ + a%c;g + (142164)(;% + 72(63a2b32 + C4(agb42 + agbgg))(fyF)n+

3
T
+ F((cw% + 63a§ + c4ai)H" + 2(03@21)32@3 + 04a2b42a4 + C4a3b43a4)(FI)"+
+ 3(030,%{)32 + C4a§b4g + C4a§b43)(fyG)” + 604@2()32(]“5)217”) + T4R54. (21)

Now we have to match equation (17) with (21) to find unkown parameters.

3.2.1. When R=2

As ¢3 = 0, equation (21) reduces to

2

h(tn, y",7) = (c1 4 c2)v" + Tazc F™ + %CzagG" + T8RP, (22)
and comparing this with (17), we have
1
c1+ca=1; agses = 3 (23)

This gives a set of two equations in three unknowns and there exists a one parameter
family of solutions.
Combining (22) with (15), we can rewrite Ay™ as

Yt — gy = Th(ty, y", 7) = T(c1 + e2)v" + T2azca F" + T3 RM,

2
Ay" = 10" + %F" + T3 RR3. (24)
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Consider the row decomposition of vector f**1 = f(y"*1 t,.1) [2]:
n n n n n 1 n n n n n n
fr = fPAY T+ 5((AZ/ ) fe Ay 427 [l Ay™ + 72 1) + TO R, (25)

where R = (R}?,... R}*), Rl = JL(30, fz pqrAy;}AygAyr

313
+ TZp,q fzr}pthygAyg + 37-22 ZpttAyp + T z,ttt) and f 1,pqT? f pqt7 f,pttv z'r,Lttt
are the values of third partial derlvatlve to be determined for y = y™ + BAy",t =
tn, + 67. The matrix B and the scalar 0 admit the corresponding intermediate values
of derivatives.

Theorem 3. If a solution of (25) was obtained using a difference scheme of the
second order of accuracy (24) and for all values of the variables y = y™,t = t,, n =
0,1,..., N, the values 7,q > 0,ca,as, the vector fO, the matriz K(y,t) and the re-
mainder in Taylor series expansion T3R*3 satisfy the inequalities:

1/ < e 2ac0 =1, 73 ||Rk3H < (1 —q)e ‘I—FTK” 2(K"—|— (K")2)H <g <1,
then || f"|| < e foralln=1,2,..., N.

Proof. Assume that the inequality HfOH < ¢ holds for the initial condition y (¢g) =
y°. The equality Ay"™ = 7(1 — co)v™ + Tcov(ty, + Taz, y™ + Tazv™), which is obtained
from (24) can be written in the form

Ay™ = 7(v" + Tegan F™) + T RE (26)
where RFs = (RFs, ... RFs ) RFs = %a%cQ(ZM flLUBol 230 O ot 407, ). After
substituting (26) in equation (25) and rearranging terms we get

2

frH = T T 4 TP ean(f, F)" %(vayyv +2fyu+ fu)" + TR, (27)

further using the equalities f = K(y,t)f = fyu+ fi = F, f = Kf + K*f = f,F + G,
equation (27) can be represented as

2
[ = (I 4+ 7K™ + 72c0a2(K™ + (K™)?)) [ + 5 (1= 20202)G" + R,

But from equation (23): agecq = 1/2,
2
n n T . n n
S = I+ TE" 4 (K4 (K" + TRy
Now, taking the hypothesis of the theorem in to account one gets
<g+(1—qe=

2 .
| /7] < HI+ K + %(K” + (K™)?) ‘ 1+ 72 HRfﬁ

3.2.2. When R=3
We can match (21) with (17) and the following set of equations are satisfied:
c1+co+c3 =1, ascy +asecs = 1/2, agCQ + a§03 = 1/3, asbzocy = 1/6. (28)

These are four equations in six unknowns and there exists a two-parameter family of
solutions. Combining (21) with (17), and substitute k1, k2 and expanding by Taylor
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we can rewrite Ay™ as

Ay™ =7(c1 + ca + c3)v" + 77 (azca + azes) F" + 72 agbgacs F'+

3
-
+ ?(agcz +ale3)G" + T1RM (29)
Equation (29) can further be simplified as
3
Ay" = TMyv" + T MoF" + T MyF" + = MyG" + TR, (30)

where M1 =c+C+ Cs3, M2 = ag2C + ascs, Mg = CQCL% + Cg@%, M4 = a203b32. NOW,
recall the decomposition of vector fm1 = f(y" ™1 t,41);

n n n n mn 1 n n n n n n
P =T LAY T 4 S (A i, Ay” 27 1, AY" + T2 )+
1 n n n n n n n n n n k
+ 5( oy DY AY AY" + 37 Ay Ay + 372 it Ay +73f1) +T4Rf4. (31)
Theorem 4. If a solution of (31) used a difference scheme of the third order of
accuracy (30) and for all values of the variables y = y™,t = t,, n =0,1,..., N, the
values 7,0 > 0, f°, the matriz K(y,t) and the remainder in Taylor series expansion
T4 Rk« satisfy the inequalities:

72 <= 7 [R5 < (- 0,

2 3

[+ 7K™ + (K" + (K™)?) + %(1"{” FKTET + (KM <o <1,

then ||f™|| <e, for alln=1,2,... N.
Proof. Substituting (30) in (31) and further simplifying, one gets

7.2 7.3
fn-i-l:fn+TFn+T2M2f;LFn+?Gn_i_?MSf;LGn_i_

3
+ M) F" + TM(FI)" 4+ = H" + 7R, (32)
where H" = (v™)?f 4 3(v")2 f1: + 30" f1 + f{i;. And recall the equalities
f=K@tf, f=Kf+K%f, f=(K+3KK+K%f,

f=fp+fi=F f=fF+G, F=fF+fG+3FI+H

= <I+7K” + T; (K" - (K”)Q) + T; (I"{” + 3K K™ + (K")?’)) 4

+ 7 RN, (33)

Taking into account the given conditions and assuming that K is constant [2] the
conclusion follows

) < 77+ 7 [ BR | < 8+ (1= D) =

T2 2 ’7'3 3
47K + (K" + - (K")
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3.2.3. When R=4

Matching equation (21) with (17) we get the following equations:
c1+cy+c3+cyq = 1,

Cotg + c3a3 + caaq = 1/2,  a3co + adez +ajea = 1/3,  caad + czad + cual = 1/4,
c3a2b3a + c4absp + cygazbyz = 1/6,  czasbszasz + cpazbsay + csazbyzay = 1/8,
03a§b32 + C4a§b4g + 04a§b43 =1/12, cqazbzy = 1/24.

But Ay™ = 7h(y", t,, 7) = 7(c1k1 + caka + c3ks + caky4). After replacing corresponding

expressions for ki, ko, k3, k4 and simplifying the result we get:
7 7 ™ 2 5 k5
Ay" = m”+?F”+€(G”+f;F”)+ﬂ(H“+(FI)”+f;G"+(fy") F™M)+7m°R;> (34)
and recalling the decomposion of f"+! = f(y"*1 t,.1);
1 1 1
fn—‘rl _ fn + f;LAy" + ngl + 7f(n2) + 7f(n3) + 7f(n4) + T5R;€05, (35)
2 3! 4!
where ) . )
FO = (AT fle, Ay™ + 27 fL Ay + T 1),
f(ng) - ( ynyyAynAynAyn + 31 ;ytAynAyn + 3T2 ;LttAyn + T?’ftrilft)?

- Jyyyy yyyt
3 rn n 4 rn
+4r ytttAy + 7" fitu

and R]]fs is obtained from fifth partial derivatives, to be determined for y = y™ +

BAy"™ t =t, + 67. The matrix B and the scalar § admit the corresponding interme-
diate values of derivatives.

Theorem 5. If a solution of (35) used a difference scheme of the fourth order of
accuracy (34) and for all values of the variables y = y™,t = t,,n =0,1,2,..., N, the
values 7,0 > 0, f°, the matriz K(y,t) and the remainder in Taylor series expansion
T RFs satisfy the inequalities:

1] <& 77 |[RF | < (1= d)e,
| I+7K" + T—Q(K”)Q + LS(K")3 + T—4(K”)4 <o<1
2 6 24 ’

then ||f™|| <e for alln=1,2,... N.
Proof. Substitute (34) in (35) and rearranging terms gives:

2 3
4
T n n n mn n n nirn n n n nirn n n n
—i-ﬂ((fy)SF + (G + fPH 4G " +6F"N™ + 7 f F"I" +3f) (F")*+ M™)+

+7°R*s . (36)

where N = v2fyyy +2v fyyt+ fyee and M = v4fyyyy —|—4v3fyyyt +61)2fyytt +4v fyeee + freee-
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Let us consider the relation f = K (y,t)f and respective derivatives
f=Kyt)f=fpo+fi=F [=(EK+K)f=[F+G,

f=(K+3KK+K®*f=fF+f,G+3FI+H,
F = (K +4KK +3K* + 6KK* + K*)f =
— [3F + f2G + f,(H + TFI) + 3f,, FT4GI + 6FN + M.

In relation with (36),

2 . 3 .. .
JrE = P T TR (KT T (R 4 3R (K £
4 . . .
i ;—4(}%" FARTE™ 4 3(K)n? + 6K (K™)? + (K™Y f" + 5RF. (37)

Taking into account the given conditions and the fact that K as constant, we
conclude

n 7—2 7—3 n 7-4 n n
17 < HI+TK”+2(K")2+6(K © -+ o (B 1+
+7°||R* || < de+ (1 - d)e =e.

Example 3. Consider the problem, which we have constructed in example 1 and
take c=1,r=1,1 =2,

k cos 61 (sin#; — 2sin ) . cos0 2k cos O (sin 7 — 2sin 05)
2= — 1—

=-2
vt cos bt (cosf1)? 4 (2cosba)? (cos 01)? + (2 cos b)?

We can easily see that the solution using MATLAB is stable for large values of the
constant k as shown below in the figure.

Time t

Figure 2. Solution using MATLAB
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VIK 531.3
Pemenne nudpdepeHnnaibHbIX ypaBHEHUI JIBUKEHUS J1JIs
MeXaHUYIECKUX CUCTEM CO CBA3AMMU

P. I. MyxapJasimos*, A. B. Bemay'

* Kagpedpa meopemuueckoti METAHUKY
Poccutickuti ynusepcumem dpyoicbv. 1apodos
ya. Murxayzxo-Maxasas 0. 6, Mockea, 117198, Poccus

' Kagpedpa mamemamuru
Baxpdapcruii yrusepcumem
Sgpuonua, Baxpdap

B pabore paccmarpuBaercst 3aj1a4a MOCTpoeHust cucteM auddepeHInabHbIX YPaBHEHUH
II0 M3BECTHBIM YaCTHBIM HMHTerpaJsiaM. [IpumBomuTcs MeTOx OIpejiesleHns IIPaBbIX dacTell Cch-
creM auddEepeHNMATBHBIX YPABHEHU, OCHOBAHHBIN HA ONpEe/eIeHn OOIIEro PEIeHus Ch-
CTEMBbI JIMHEHHBIX aJredpantecKux ypaBHEHHUH ¢ IPSIMOYTOIbHOM MaTpuiieit KO3 OUITMEHTOB.
IIperaraercst ©CIIOIB30BATH JIJIsI YUCJTEHHOTO PEIIEHUS IOCTPOEHHO cucTeMbl JuddepeHiim-
abHBIX ypaBHenuil meron Pyrre-Kyrra. lns paccmaTrpuBaemoit 3amadu panee ObLIN UCIIOTb-
30BaHbI IPOCTEHINNe PA3HOCTHLIE CXEeMBI II€PBOro nopsiaka u Metox Pynre KyTrra s cioygas
JIMHERHBIX uddepeHITuaIbHBIX YPABHEHNI BO3MYIIEHNM CBs3€ll ¢ TOCTOAHHBIMH KO3 hu-
nueHTaMu. B cTaTbe MOJIy<ueHbl OrpaHUYueHUsT Ha KOI(PDUIMEHTHl YPABHEHUNM BO3MYIIEHUN
cBA3el, 3aBUCAIIEe OT (PA30OBBIX KOODJWHAT CHCTEMBI, IIPH DPelleHun JuddepeHnnaababIX
ypasHeHnuit MetonoMm Pynre-Kyrra. [lonpobHo paccMOTpeHbI ciy4yan pa3HOCTHBIX ypPaBHEHUN
[IEPBOTO MOPSAIKA, COCTOSIINX U3 HECKOMbKUX cTaauii. [lonyuena obmast dopma ycioBuit cra-
OMIM3aIy YpaBHEHUH CBs3eil. MeTo MIIIIOCTPUPYeTCs Ha IIPUMEPE PEIIeHusT KMHeMaTHde-
CKO#1 33/1a41 KPUBOIIUITHO-IIIATYHHOIO MEXAHU3MA.

KuaroueBsbie cioBa: jguddepeHiinaibHble ypaBHEHUsI, YUCJIEHHOE HHTEIPUPOBAHNE, K-
HEMaTUIEeCKNe OTPpAHUIEHNsI, cTabuan3anus, psaa Teimopa.





