УДК 555.7:552.313

ПЕТРОХИМИЧЕСКАЯ СТРУКТУРА ТОЛЩИ РАННЕВЕНДСКИХ БАЗАЛЬТОИДОВ ЮГО-ЗАПАДА ВОСТОЧНО-ЕВРОПЕЙСКОЙ ПЛАТФОРМЫ

К.И. Свешников

Инженерный факультет Российский университет дружбы народов ул. Миклухо-Маклая, 6, Москва, Россия, 117198

Е.И. Деревская

Национальный научно-природоведческий музей НАНУ ул. Б. Хмельницкого, 15, Киев, Украина, 01030

В.Л. Приходько, Я.А. Косовский

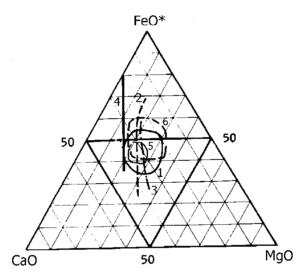
ГРП Пивничгеология ул. Геофизиков, 10, Киев, Украина, 01030

Ранневендская волынская базальтоидная серия юго-западной части Восточно-Европейской платформы содержит два типа породных парагенезисов, близких по петрографическому составу, но отличающихся характером петрохимических трендов. Один из них отвечает толеитовому, второй — кимберлитовому типу трендов. Обсуждаются вопросы возможной связи Сu и Au минерализации с границами парагенезисов разных типов.

Ключевые слова: волынская серия, венд, трапповая ассоциация, породные парагенезисы, толеитовая серия, кимберлитовая серия, медь, золото.

В нижней части разреза платформенного чехла юго-запада Восточно-Европейской платформы (ВЕП) выделяются верхнерифейская полесская серия и вендские волынская и валдайская серии. Псаммито-вулканогенная волынская серия раннего венда общей мощностью около 500 м прослеживается вдоль Волыно-Подольской окраины ВЕП в южном направлении от Беларуси и Польши до Молдавии. В северной части ареала она заполняет Волыно-Оршанский авлакоген — крупную синформную структуру, осложненную Луковско-Ратненской сводовогорстовой зоной субширотного простирания, разделяющей впадины — Брестскую на севере и Волынскую — на юге. Вулканиты волынской серии всеми исследователями относятся к трапповой формации. Наиболее близко к современному уровню эрозионного среза базальтоиды подходят в северо-западной части Украины, где вскрыты рядом карьеров и многочисленными скважинами. На протяжении последних 20 лет здесь проводят поисково-оценочные работы в связи с меденосностью трапповой формации. В разрезе волынской серии выделяют (снизу вверх):

— спорадически развитую *бродовскую брекчиево-конгломерато-аргиллитовую* свиту (мощностью до 40 м);


- *горбашевскую* свиту (до 50 м), сложенную гравелитами, песчаниками с линзами пикритов и оливиновых базальтов [4];
 - заболотьевскую свиту (до 85 м) оливиновых базальтов и их туфов;
- *бабинскую* свиту (100-200 м) базальтовых туфов с прослоями базальтов, туфо- и лавобрекчий;
- ратненскую свиту, в составе которой выделяют: лучицкую толицу оливиновых и безоливиновых базальтов с прослоями лавобрекчий (15—115 м); зорянскую толицу (до 65 м) алевролитов, песчаников, конгломератов с прослоями субщелочных основных туфов, трахибазальтов, трахитов (в составе ее аналогов в Брестской впадине ратайчиской свите известны трахиты, латиты, андезиты, дациты [2, 3]); якушевскую толицу высокотитанистых базальтов и ферробазальтов (до 135 м). Последняя несогласно перекрыта верхневендской иваномысловской толицей алевролитов, песчаников, конгломератов. В каждой вулканической толице выделяют по нескольку ритмов покровов базальтов, разделенных прослоями туфов, лавокластических брекчий, иногда конгломератов.

Красноцветные отложения полесской серии содержат дайки габбро-диабазов и силлы габбро-долеритов, рассматриваемые многими исследователями как комагматичные вышележащим базальтам волынской серии. Отложения горбашевской свиты всегда с размывом залегают на бродовских слоях, перекрывающих полесскую серию, непосредственно на образованиях полесской серии или на кристаллическом фундаменте, образуя два осадочных ритма. Породы верхнего ритма горбашевской свиты с размывом залегают на отложениях нижнего ритма и представлены аллювиальными и пролювиальными отложениями. По мнению В.Г. Мельничука [4], в разрезе волынской серии присутствуют два различных трапповых комплекса (базальты бабинской + лучицкой свит и базальты якушевской толщи, разделенных пестроокрашенными терригенными отложениями зорянской толщи; в составе последней содержатся также туфы, отвечающие субщелочным базальтам до трахитов и обладающие максимальной щелочностью среди всех разновидностей волынской серии). Возраст базальтов лучицкой толщи, определенный самарий — неодимовым методом, составляет 940, 981 млн лет [8]

Проведенное нами изучение петрохимических особенностей базальтов вольнской серии позволило выделить в ее разрезе несколько породных парагенезисов, отличающихся характером петрохимических трендов и не обязательно совпадающих по объемам с объемами стратиграфических подразделений. Представляет интерес сопоставление таких парагенезисов с известными формационными типами и рассмотрение возможной потенциальной рудоносности разных парагенезисов. При решении подобных задач одной из наиболее информативных является диаграмма FeO* — MgO — CaO. На этой диаграмме базальтовая толща «распадается» на ряд горизонтов, петрохимические особенности которых отвечают двум типам трендов.

Массивные базальты верхних частей разреза, слагающие основной объем разрезов лучицкой и якушевской толщ, образуют изометричные поля в центральной части диаграммы (рис. 1). Такие поля характерны для недифференцированных

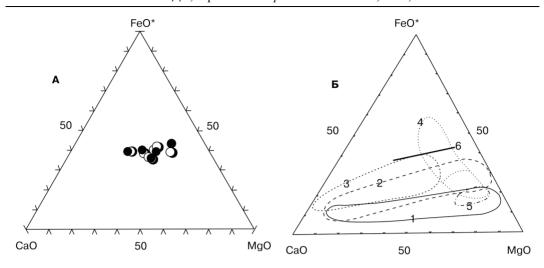
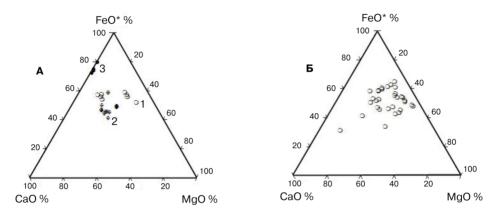

вулканических формаций натриевых базальтов и базальт-долеритовых (трапповых) формаций, или толеитовых базальтов, по терминологии разных исследователей. Комагматичные вулканитам интрузивные тела образуют хорошо выраженные тренды, протягивающиеся в направлении вершины треугольника FeO* [6]. Таким образом, базальты лучицкой и якушевской толщ по этим и другим признакам (например, по положению на широко известной диаграмме AFM) отвечают трапповой ассоциации, как это и считают все без исключения исследователи волынской серии.

Рис. 1. Породные парагенезисы габбро-диабазовых и трапповых ассоциаций на диаграмме $FeO^* - MgO - CaO$:

габбро-диабазовый формационный тип; 2 — габбро-диабазовая формация Украинского щита (Приднепровский район); 3 — то же Алданского щита (Хани-Олондинский район); 4 — кузьмовский комплекс трапповой ассоциации Восточной Сибири; базальты: 5 — лучицкой, 6 — якушевской толщ

Базальты заболотьевской свиты обладают совершенно иным трендом, отражающим последовательное изменение количественных соотношений магния и кальция при почти постоянном относительном количестве железа (рис. 2A). Среди известных трендов они оказываются наиболее подобными трендам альпикритов — базальтов, ассоциирующих с кимберлитами (рис. 2Б) [7]. Напомним, что заболотьевская свита залегает согласно на отложениях горбашевской свиты, в разрезе которой установлено присутствие линз пикритов или маломощных прослоев оливиновых базальтов, а также туфогенного материала. По мнению ряда исследователей, горбашевская совместно с заболотьевской свитой образуют отдельную геологическую структуру — локальную впадину, отличающуюся по морфологии от проявлений щитового вулканизма вышележащих базальтовых толщ. Судя по имеющимся радиологическим данным [2; 8], вулканиты этой впадины отделены значительным возрастным интервалом от остальной части волынской серии.


Puc. 2. А: положение фигуративных точек базальтов заболотьевской свиты на диаграмме FeO* — MgO — CaO; Б: тренд базальтов заболотьевской свиты

поле алмазоносных кимберлитов внутренних районов Якутской провинции;
 поле неалмазоносных кимберлитов и убогоалмазоносных кимпикритов северных районов Якутской провинции;
 поле альпикритов Чадобецкого комплекса;
 поле лампроитов Австралии;
 поле оранжитов трубки Финч [7];
 тренд базальтов заболотьевской свиты

Наиболее разнообразно строение бабинской свиты, занимающей в разрезе серии промежуточное положение между рассмотренными выше толщами. Нижняя и средняя части разреза бабинской свиты сложены туфами и массивными базальтами, образующими на диаграмме изометричное поле, практически идентичное полям фигуративных точек базальтов вышележащих толщ трапповой ассоциации (выборки 1 и 2 на рис. 3А). Отдельные анализы (выборка 3 на рис. 3А) отвечают субщелочным базальтам, по диаграмме А.А. Маракушева. В верхней части разреза бабинской свиты известна относительно мощная толща туфов, раздифференцированных «по кальцию» при относительно постоянных количественных соотношениях железа и магния (рис. 3Б). Тренд рассматриваемой толщи туфов по своей направленности субпараллелен тренду заболотьевской свиты, но отличается в то же время более высокой железистостью (отношение железа к магнию в заболотьевской свите чуть ниже 1/1, а в туфах бабинской свиты — 3/2). Тренд подобной направленности с такой же железистостью намечается и для миндалекаменных базальтов нижней части разреза якушевской толщи (здесь он хуже выражен, вероятно, из-за недостаточного количества анализов).

В эффузивной толще венда Волынского рудного района установлена самороднометальная минерализация (Сu, Fe, Ag, Pb, Au, Ni). Здесь выделяют 10—11 горизонтов самородномедной минерализации, из которых 5—6 имеют промышленные параметры [5]. Рудные тела представлены сингенетической вкрапленной минерализацией или выполняют трещины, жилы, пустоты и миндалины в ассоциации с эпигенетической минерализацией среди базальтоидов. Распространение сингенетической минерализации, по мнению В.Г. Мельничук [4], должно корре-

лироваться с особенностями петрохимического состава базальтов. Исходя из имеющихся в нашем распоряжении данных по базальтам рассматриваемой части Волынской впадины, наиболее перспективные проявления меди сосредоточены на двух стратиграфических уровнях: а) в пограничных частях бабинской и лучицкой толщ (скв. 8112, 5825, содержания меди — от 1 до 10 кларков¹); б) в верхней части разреза лучицкой и нижней части разреза якушевской толщ (скв. 8100, 8107, 8279, содержания меди — до 15 кларков).

Рис. 3. Положение пород бабинской свиты на диаграмме $FeO^* - MgO - CaO$:

А: 1 -Туфы нижней части разреза; 2 - массивные базальты, 3 - миндалекаменные базальты; 5 -Туфы верхней части разреза

Результаты золотометрии показали, что преобладающее количество проб с повышенным содержанием золота (2—4 кларка) отвечает туфам бабинской свиты вблизи кровли свиты (скв. 8112, 8147), т.е. несколько ниже границы ее с лучицкой толщей. Реже золотосодержащие породы встречаются в нижней части разреза якушевской (скв. 8283) и верхней лучицкой толщ. Содержание золота в них заметно меньше, хотя в отдельных пробах из пород якушевской свиты могут достигать 10 и более кларков. Среди прочих рассеянных элементов следует отметить поведение ванадия — последний содержится в околокларковых количествах в базальтах заболотьевской и якушевской толщ, а также в туфах бабинской свиты. Во всех остальных подразделениях средние содержания ванадия на порядок ниже.

Обсуждение результатов. Волынская серия венда юго-западной части ВЕП сложена относительно однообразными в петрографическом отношении базальтоидами (лавами, туфами, лавобрекчиями), вполне соответствующими, на первый взгляд, трапповой ассоциации. Тем не менее в петрохимическом отношении эта толща включает по меньшей мере две группы базальтоидов (породных парагенезисов). Базальтоиды одной из них раздифференцированы «по кальцию» при относительно постоянных соотношениях железа и магния; базальтоиды второй группы по соотношениям наиболее распространенных оснований (железа, магния, кальция) не раздифференцированы и образуют на диаграмме изометричные поля.

¹Приняты кларки для основных пород по А.П. Виноградову.

Характер чередования парагенезисов в разрезе показан на рис. 4. Границы парагенезисов, по-видимому, могли играть роль геохимических барьеров, вблизи которых на ряде участков концентрировалось медное оруденение (рис. 5).

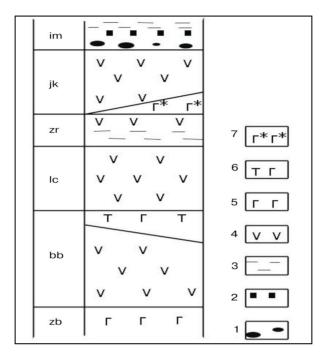
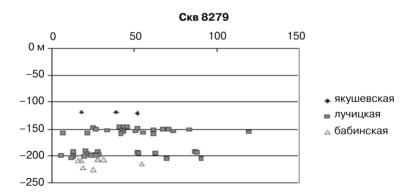



Рис. 4. Схема петрохимического строения волынской серии:

```
    Zb — заболотьевская свита; bb — бабинская свита; lc — лучицкая свита.
    Zr — зорянская, jk — якушевская толщи, im — иваномысловская толща.
    Условные обозначения: 1 — конгломераты, 2 — песчаники,
    3 — алевролиты, 4 — недифференцированные базальты,
    5 — базальты, раздифференцированные «по кальцию»,
    6 — туфы, 7 — субщелочные базальты
```


Рис. 5. Распределение медного оруденения в пограничных участках бабинской + лучицкой и лучицкой + якушевской толщ в скв. 8279

Возникает вопрос: являются ли выделенные парагенезисы производными одной толеитовой магмы или же результатом смешения двух различных распла-

вов — толеитового и родственного кимберлитовым? Однозначно на этот вопрос можно ответить, лишь проведя целенаправленные изотопные исследования ранневендских базитов; пока же имеющийся материал свидетельствует в пользу скорее второго варианта. В пользу этого говорит не только подобие трендов (см. рис. 2Б), но и единичные находки пиропов в породах горбашевской свиты [5], подстилающих заболотьевскую свиту и содержащих пикриты (последние не характерны для трапповых ассоциаций, но обычны для кимберлитсодержащих). Существующие обобщения [7] показывают, что кимберлиты встречаются в природе не «сами по себе», а являются составной частью более сложных ассоциаций, включающих породы типа упоминавшихся выше кимпикритов и альпикритов. Предполагается, что с последними сопоставимы базальтоиды заболотьевской свиты венда Волыни.

Из сказанного следуют три предположения:

- 1) разрез вулканитов волынской серии начинается с проявлений магматизма, родственного кимберлитовому (линзы пикритов горбашевской свиты, заболотьевская свита), и продолжается трапповым (толеитовым) магматизмом (начиная с бабинской свиты). «Раздифференцированные по кальцию» парагенезисы в составе бабинской и якушевской толщ представляют собой последние «отголоски» родственного кимберлитовому магматизма;
- 2) пограничные части парагенезисов разных типов представляют особый интерес с точки зрения поисков полезных ископаемых;
- 3) дальнейшие исследования вулканитов в низах чехла платформы, вероятно, позволят определить контуры кимберлитового ареала и выявить потенциально рудоносные части последнего.

ЛИТЕРАТУРА

- [1] *Гурский Д.С., Приходько В.Л., Билоус В.В.* Самородная медь Волыни (укр.) // Мінеральні ресурси України, 1995. № 1. С. 6.
- [2] *Кузьменкова О.Ф.* Геохимия трапповой формации венда Беларуси: Автореф. дисс. ... канд. г.-м. наук. Минск, 2009.
- [3] *Мельничук В.Г.* Обоснование пропозиций по внесению изменений в стратиграфическую схему нижневендских образований (лапландский горизонт) Украины (укр.) // Тектоника и стратиграфия. 2009. N 4. С. 36—42.
- [4] *Мельничук В.Г.* Беловежско-подольский трапповый комплекс нижнего венда и его меденосность (укр.) // Геологический журнал. 2009. № 4. С. 59—68.
- [5] Приходько В.Л., Косовский Я.А., Иванив И.Н. Перспективы меденосности вулканогенных образований волынской серии Луковско-Ратненской горстовой зоны // Геологический журнал. <math>1993. N 4. C. 138—143.
- [6] Свешников К.И. Устойчивые сочетания магматических пород. М.: Изд-во РУДН, 2008.
- [7] *Фролов А.А., Лапин А.В., Толстов А.В. и др.* Карбонатиты и кимберлиты. М.: НИА Природа, 2005.
- [8] *Шумлянский Л., Деревская К.* Первые Sm-Nd и Rb-Sr изотопно-геохимические данные о вендских базальтах Волыни (укр.) // Наукові праці Інституту фундаментальних досліджень. Київ: «Знання України», 2001. С. 67—75.

PETROCHEMICAL STRUCTURE OF EARLY VENDIAN BASALT SERIES IN THE SOUTH-WESTERN PART OF THE EAST-EUROPEAN PLATFORM

K.I. Sveshnikov

Engineering faculty
People's Friendship Russian University
Miklukho-Maklaya str., 6, Moscow, Russia, 117198

E.I. Derevskaja

National Ukrainian scientific Museum of natural History Chmelnitskaja str., 15, Kiev, Ukraine, 01030

V.L. Prikhodko, Ya.A. Kosovsky

Pivnichgeologia geological party Geophysical str., 10, Kiev, Ukraine, 03121

Early Vendian volcanic volynskaya series in the South-Western part of the East-European platform contains two types of rock's paragenesa which differ by petrochemical trends. One of these types corresponds to tholeitic, other — to kimberlitic trends. Guestions of possible connections of Cu and Au mineralization with different paragenesa boundaries are discussed.

Key words: volynskaya series, Vendian, trappean association, rocks paragenesa, tholeitic series, kimberlitic series, copper, gold.